共查询到20条相似文献,搜索用时 0 毫秒
1.
Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys 总被引:6,自引:0,他引:6
Levels of the inhibitory transmitter, GABA, and its synthesizing enzyme, GAD, appear to be regulated in the visual cortex of young adult monkeys in an activity-dependent manner. In monkeys subjected to monocular deprivation by eye removal, tetrodotoxin injection, or eyelide suture, the number of GABA and GAD immunoreactive neurons in deprived-eye columns of the cortex is reduced by up to 50%. This effect is unaccompanied by cell death and is reversible. After cessation of TTX injection or reopening of the eyes, the number of immunostained cells returns to normal. The effect appears after 4-5 days of eye removal or tetrodotoxin injection, but only after 7-16 weeks of eyelid suture. In the latter case, it is more severe in the younger monkeys. The reversible reduction in GABA and GAD immunostaining extends out of layer IVC into lay IVA and to neurons around but not in cytochrome oxidase periodicities of layer III. This may indicate selective vulnerability of GABA cells sensitive to high spatial frequency. 相似文献
2.
3.
Calretinin is a calcium-binding protein which participates in a variety of functions including calcium buffering and neuronal protection. It also serves as a developmental marker of retinal ganglion cells (RGCs). In order to study the role of calretinin in the development and regeneration of RGCs, we have studied its pattern of expression in the retina at different developmental stages, as well as during optic nerve regeneration by means of immunohistochemistry. During development, calretinin is found for the first time in RGCs when they connect with the optic tectum. Optic nerves from adult zebrafish were crushed and after different survival times, calretinin expression in the retina, optic nerve tract and optic tectum was studied. From the day of crushing to 10 days later, calretinin expression was found to be downregulated within RGCs and their axons, as was also observed during the early developmental stages of RGCs, when they are not committed to a definite cell phenotype. Moreover, 13 days after lesion, when the regenerating axons arrived at the optic tectum, a recovery of calretinin immunoreactivity within the RGCs was observed. These results indicate that calretinin may play an important role during optic nerve regeneration, Thus, the down-regulation of Calretinin during the growth of the RGC axons towards the target during development as well as during their regeneration after injury, indicates that an increase the availability of cytosolic calcium is integral to axon outgrowth thus recapitulating the pattern observed during development. 相似文献
4.
Apoptosis in the developing visual system 总被引:7,自引:0,他引:7
Programmed cellular death is a widespread phenomenon during development of the nervous system. Two classes of molecules are particularly important in the context of apoptosis control in the nervous system: intracellular effectors homologous to the Caenorhabditis elegans Ced-3, -4, and -9 proteins, which in mammals correspond to the proteases of the caspase family, Apaf-1, and the members of the Bcl-2 protein family, and neurotrophic factors. Retinal ganglion cells lend a convenient model system with which to investigate apoptosis in central neurons during development as well as after injury. In this review, we discuss the role of these molecules in the control of programmed cellular death in the retinotectal system. Transgenic animal models and expression studies have shown that caspases, Bcl-2, Bax, and possibly Bcl-X are necessary players for the control of programmed cellular death in retinal ganglion cells. Bax and caspase 3 expression in retinal ganglion cells is upregulated after injury, and inhibition of Bax or caspase 3 increases the survival of injured retinal ganglion cells. Neurotrophins can support the survival of injured retinal ganglion cells, but this effect is transient. The physiological role of neurotrophins in the development of the retinocollicular system seems more related to the topographic refinement of retinocollicular projections, a process that is mediated, at least partially, by selective elimination of retinal ganglion cells making inappropriate topographic projections. 相似文献
5.
6.
Kalman Rubinson 《Developmental neurobiology》1990,21(7):1123-1135
Metamorphosis of the sea lamprey, Petromyzon marinus, is a true metamorphosis. The larval lamprey is a filter-feeder who dwells in the silt of freshwater streams and the adult is an active predator found in large lakes or the sea. The transformation usually occurs in the fifth or sixth year of life. Enlargement of the eye has been long accepted as a distinctive indication of metamorphosis in the sea lamprey, but it had been thought that this was because eye development in the larva was arrested after the formation of only the small central region. Recent studies indicate that all of the retina begins its development in the larva and that ganglion, amacrine, and horizontal cells differentiate in the peripheral retina of the larva. Retinal development is arrested during the premetamorphic period, to be resumed during metamorphosis. Metamorphic contributions include the differentiation of photoreceptor and bipolar cells. With the early appearance of ganglion cells, retinal pathways to the thalamus and tectum are established in larvae, as is a centripetal pathway. Tectal development spans the larval period but a spurt in tectal growth and differentiation is correlated with the completion of the retinal circuitry late in metamorphosis. The metamorphic changes in retina and tectum complete the functional development of the visual system and provide for the adult lamprey's predatory and reproductive behavior. 相似文献
7.
V L Silakov M M Khananashvili B T Moroz N I Pityk V D Perkhurova 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1977,27(6):1207-1215
It has been established in experiments on immobilized cats that somatic and interoceptive signals produce complex reorganizations of the spontaneous and evoked activity of visual cortex units. Either long diffuse changes of spike frequency or phasic reactions have been observed. The dynamics of sensory integration in the visual cortex is determined by unconditioned and conditioned mechanisms both of an intra- and interanalyser nature. Functioning of the microsystem of learning elements in the visual cortex is based on units capable of fixing the elaborated changes of evoked activity and constituting 18.6 percent of the total number of cellular elements in the visual projection cortex, responding to direct cortical stimulation. Microinophoresis of synaptically active agents has shown that complexely organized choline- and serotoninergic structures involved in the processes of unconditioned and conditioned interaction of heteromodal excitations are located in the visual cortex. 相似文献
8.
Positional identity in the visual system affects the topographic projection of the retina onto its central targets. In this review we discuss gradients and positional information in the retina, when and how they arise, and their functional significance in development. When the axons of retinal ganglion cells leave the eye, they navigate through territory in the central nervous system that is rich in positional information. We review studies that explore the navigational cues that the growth cones of retinal axons use to orient towards their target and organize themselves as they make this journey. Finally, these axons arrive at their central targets and make a precise topographic map of visual space that is crucial for adaptive visual behavior. In the last section of this review, we examine the topographic cues in the tectum, what they are, when, and how they arise, and how retinal axons respond to them. We also touch on the role of neural activity in the refinement of this topography. © 1993 John Wiley & Sons, Inc. 相似文献
9.
Growth factors and other extracellular signals regulate cell division in many tissues. Consequently, growth factors may have therapeutic uses to stimulate the production of replacement sensory hair cells in damaged human inner ears, thereby assisting in alleviating hearing loss and vestibular dysfunction. Assessment of the ability of growth factors to stimulate cell proliferation in inner ear sensory epithelia is at an early stage. This paper provides a brief account of what we know regarding growth factor regulation of cell proliferation in developing and mature inner ear sensory epithelia. 相似文献
10.
Celsr, also called Flamingo (Fmi) genes encode proteins of the cadherin superfamily. Celsr cadherins are seven-pass transmembrane proteins with nine cadherin repeats in the extracellular domain, and an anonymous intracellular C-terminus. The Drosophila Fmi gene regulates epithelial planar cell polarity and dendritic field deployment. The three Flamingo gene orthologs in man and rodents are named, respectively, CELSR1-3 and Celsr1-3. Celsr1 and 2 are expressed during early development, in the brain and epithelia. In this report, we characterized further Celsr genes in the mouse, and examined their developmental pattern of expression. Each Celsr is expressed prominently in the developing brain following a specific pattern, suggesting that they serve distinct functions. 相似文献
11.
Visual pigment (VP) expression in the chick embryo retina was investigated in ovo, in dissociated and explant cultures, and in cDNAs from individual cells. While VP mRNA is not detectable by in situ hybridization until embryonic day (ED) 14-16 in ovo, analysis of VP expression by RT-PCR showed that VP messages are present in the retina as many as 7-10 days before they become detectable by in situ hybridization, and are also detected in other regions of the embryonic CNS. On the other hand, red opsin expression is markedly accelerated when cells are isolated from their intraocular microenvironment at ED 6, and placed in pigment epithelium-free dissociated or explant cultures. This acceleration occurs regardless of cell density, birth date, or serum presence in the medium, suggesting that many photoreceptors are already programmed to express red opsin on or before ED 6, and that microenvironmental inhibitory factors prevent implementation of this program until ED 14 in ovo. The selectivity of this phenomenon is suggested by the finding that other VPs are not observed by in situ hybridization in ED 6 cultures, although they are detectable in cultures of older retinas. Taken together, these findings suggest that red opsin expression may be constitutive for many developing photoreceptor cells in the chick. 相似文献
12.
13.
Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system
Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types. 相似文献
14.
Ana Barat Elena Escudero Corona Rodríguez-Borrajo Galo Ramírez 《Neurochemistry international》1983,5(1):95-99
We have carried out a comparative study of the developmental profiles of the enzyme acetylcholinesterase, and of its collagen-tailed and globular structural forms, solubilized in the presence of 1 M NaCl, 1% (w/v) sodium cholate and 2 mM EDTA, in the chick retina and optic lobes. The overall acetylcholinesterase activities, both per mg protein and per embryo or chick, are substantially higher in tectum than in retina, from embryonic day 16. The A12 collagen-tailed form of the enzyme is present in similar amounts in the embryonic retina and optic tectum; however, while the A12 activity increases significantly in retina after birth, both by percentage and in absolute terms, the tectal tailed enzyme follows a declining developmental profile, reaching a minimum after 6 months of life. On the other hand, the globular G4 species shows developmental profiles, both in retina and tectum, rather similar to those obtained for the overall enzyme activity, while the G2 and G1 forms are present in comparable concentrations in both tissues. Besides, G4 is the predominant globular form in the chick optic lobe after hatching, G2 and G1 being enriched in the embryonic tectum. In the case of retina, however, all the globular forms contribute more evenly to the total acetylcholinesterase activity, along the developmental period considered.The potential significance of some of the postnatal developmental profiles is discussed in terms of the progressive adjustment of retina and tectum to the requirements of visual function. 相似文献
15.
16.
17.
Glucocorticoid regulation of glycerolphosphate dehydrogenase (GPDH) activity and gene expression in the developing rat brain appears complex throughout the postnatal developmental period and attains the adult pattern after the first month of life. GPDH enzyme activity is higher in the limbic system than in the cerebral cortex of intact young animals. Adrenalectomy of young rats, before the first month of life, does not affect GPDH enzyme activity in the brain areas mentioned above, while in the adult animals it results in a statistically significant decrease in activity. Furthermore, adult type glucocorticoid responsivity of GPDH enzyme activity is attained in the developing limbic system earlier — by day 40 of life — than in the cerebral cortex. During the first month of life, GPDH basal mRNA levels are increased in the absence of glucocorticoids, in both the limbic system and the cortex, in contrast to the effect of adrenalectomy in the adults, where GPDH mRNA levels are decreased in the absence of the adrenals. The observed pattern of glucocorticoid regulation of GPDH during development in the rat is discussed in relation to the possible existence of various levels of regulation of GPDH gene and enzyme activity. 相似文献
18.
19.