首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glial specification in the vertebrate neural tube   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
During embryonic development, the first blood vessels are formed through the aggregation and subsequent assembly of angioblasts (endothelial precursors) into a network of endothelial tubes, a process known as vasculogenesis. These first vessels generally form in mesoderm that is adjacent to endodermal tissue. Although specification of the angioblast lineage is independent of endoderm interactions, a signal from the endoderm is necessary for angioblasts to assemble into a vascular network and to undergo vascular tube formation. In this study, we show that endodermally derived sonic hedgehog is both necessary and sufficient for vascular tube formation in avian embryos. We also show that Hedgehog signaling is required for vascular tube formation in mouse embryos, and for vascular cord formation in cultured mouse endothelial cells. These results demonstrate a previously uncharacterized role for Hedgehog signaling in vascular development, and identify Hedgehog signaling as an important component of the molecular pathway leading to vascular tube formation.  相似文献   

6.
The mechanisms of dorsoventral patterning in the vertebrate neural tube   总被引:5,自引:0,他引:5  
We describe the essential features of and the molecules involved in dorsoventral (DV) patterning in the neural tube. The neural tube is, from its very outset, patterned in this axis as there is a roof plate, floor plate, and differing numbers and types of neuroblasts. These neuroblasts develop into different types of neurons which express a different range of marker genes. Early embryological experiments identified the notochord and the somites as being responsible for the DV patterning of the neural tube and we now know that 4 signaling molecules are involved and are generated by these surrounding structures. Fibroblast growth factors (FGFs) are produced by the caudal mesoderm and must be down-regulated before neural differentiation can occur. Retinoic acid (RA) is produced by the paraxial mesoderm and is an inducer of neural differentiation and patterning and is responsible for down-regulating FGF. Sonic hedgehog (Shh) is produced by the notochord and floor plate and is responsible for inducing ventral neural cell types in a concentration-dependent manner. Bone morphogenetic proteins (BMPs) are produced by the roof plate and are responsible for inducing dorsal neural cell types in a concentration-dependent manner. Subsequently, RA is used twice more. Once from the somites for motor neuron differentiation and secondly RA is used to define the motor neuron subtypes, but in the latter case it is generated within the neural tube from differentiating motor neurons rather than from outside. These 4 signaling molecules also interact with each other, generally in a repressive fashion, and DV patterning shows how complex these interactions can be.  相似文献   

7.
Hedgehog (Hh) proteins are members of a family of secreted signaling factors that orchestrate the development of many organs and tissues including those of the gastrointestinal (GI) tract. The requirement for Hh activity is not limited to early development but underlies the homeostasis of a number of tissues, and abnormal activity of the Hh pathway is associated with several GI malignancies. Understanding the roles and mechanisms of action of Hh signaling both in development and postnatally should thus give novel insights into potential treatments for these diseases. Here we focus on the Hh signaling pathway and its role in GI tract development and maintenance and consider the diseases resulting from aberrant Hh activity.  相似文献   

8.
9.
10.
Toll-like receptor 3 (TLR3) signaling has been implicated in neural stem/precursor cell (NPC) proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF)-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT) or TLR3 deficient (TLR3(-/-)) mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC) negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh) signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.  相似文献   

11.
12.
13.
14.
15.
16.
Shh是一种作用于脊椎动物细胞分化和组织诱导的信号分子,它通过跨膜蛋白Ptc受体和信号转录因子Glil参与信号转导机制。从胚胎期(E12)到成年,Shh信号在鼠舌味乳头中的表达都非常广泛。在味乳头最初发育阶段,Shh信号的作用包括调节上皮和间质细胞的交互作用、控制乳头形成和成型、限定乳头的分布模式、决定细胞分化的命运等,破坏Shh信号会导致菌状数量增多、面积增大以及乳头分布区域更广。  相似文献   

17.
A long standing question in developmental biology is how morphogen gradients establish positional information during development. Although the existence of gradients and their role in developmental patterning is no longer in doubt, the ability of cells to respond to different morphogen concentrations has been controversial. In the Drosophila wing disc, Hedgehog (Hh) forms a concentration gradient along the anterior-posterior axis and establishes at least three different gene expression patterns. In a recent study, we challenged the prevailing idea that Hh establishes positional information in a dose-dependent manner and proposed a model in which dynamics of the gradient, resulting from the Hh gene network architecture, determines pattern formation in the wing disc. In this Extra View, we discuss further the methodology used in this study, highlight differences between this and other models of developmental patterning, and also present some questions that remain to be answered in this system.Key words: Hedgehog, developmental patterning, morphogen, dynamics, mathematical modeling  相似文献   

18.
19.

Background  

Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号