首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology.Proteomics technologies have evolved to produce larg...  相似文献   

2.
3.
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled to this advanced technological platform as a required component of not only peptide and protein identification, but quantification and functional inference, such as protein modifications and interactions. Proteomics faces several key computational challenges such as identification of proteins and peptides from tandem mass spectra as well as their quantitation. In addition, the application of proteomics to systems biology requires understanding the functional proteome, including how the dynamics of the cell change in response to protein modifications and complex interactions between biomolecules. This review presents an overview of recently developed methods and their impact on these core computational challenges currently facing proteomics.  相似文献   

4.
5.
种子蛋白质组的研究进展   总被引:7,自引:1,他引:6  
蛋白质组学是通过对全套蛋白质动态的研究,来阐明生物体、组织、细胞和亚细胞全部蛋白质的表达模式及功能模式。大量可用的核苷酸序列信息和灵敏高速的质谱鉴定技术,使得蛋白质组学方法为分析模式植物和农作物的复杂功能开辟了新的途径。目前,种子蛋白质组研究主要集中在两个方面:一方面是鉴定尽可能多的蛋白,以创建种子特定生命时期的蛋白质组参照图谱;另一方面主要集中在差异蛋白质组,通过比较分析不同蛋白质组,以探明关键功能蛋白。该文综述了近年来种子蛋白质组的研究进展,内容包括种子发育过程中蛋白质组的变化,与种子休眠/萌发相关的蛋白质组、翻译后修饰蛋白质组、细胞与亚细胞差异蛋白质组以及环境因子对种子蛋白质组的影响;并对种子蛋白质组研究的热点问题进行了展望。  相似文献   

6.
蛋白质组学是通过对全套蛋白质动态的研究, 来阐明生物体、组织、细胞和亚细胞全部蛋白质的表达模式及功能模式。大量可用的核苷酸序列信息和灵敏高速的质谱鉴定技术, 使得蛋白质组学方法为分析模式植物和农作物的复杂功能开辟了新的途径。目前, 种子蛋白质组研究主要集中在两个方面: 一方面是鉴定尽可能多的蛋白, 以创建种子特定生命时期的蛋白质组参照图谱; 另一方面主要集中在差异蛋白质组, 通过比较分析不同蛋白质组, 以探明关键功能蛋白。该文综述了近年来种子蛋白质组的研究进展, 内容包括种子发育过程中蛋白质组的变化, 与种子休眠/萌发相关的蛋白质组、翻译后修饰蛋白质组、细胞与亚细胞差异蛋白质组以及环境因子对种子蛋白质组的影响; 并对种子蛋白质组研究的热点问题进行了展望。  相似文献   

7.
Chanchal Kumar 《FEBS letters》2009,583(11):1703-1712
Proteomics has made tremendous progress, attaining throughput and comprehensiveness so far only seen in genomics technologies. The consequent avalanche of proteome level data poses great analytical challenges for downstream interpretation. We review bioinformatic analysis of qualitative and quantitative proteomic data, focusing on current and emerging paradigms employed for functional analysis, data mining and knowledge discovery from high resolution quantitative mass spectrometric data. Many bioinformatics tools developed for microarrays can be reused in proteomics, however, the uniquely quantitative nature of proteomics data also offers entirely novel analysis possibilities, which directly suggest and illuminate biological mechanisms.  相似文献   

8.
In the post-genomic era the concept of personalized medicine and molecular medicine emphasizes the utility of the proteomics approach. Proteomics is the global analysis of cellular proteins and complements the genomics approach. Proteins, in principle do all the work of the cell and ultimately dictate all biological processes and the cellular fate. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing and bioinformatics to identify and characterize proteins. This review aims at providing the various approaches and pitfalls associated with this technique and gives a brief overview of the utility of this approach in the area of biomedical research.  相似文献   

9.
The proteome analysis by 2-DE is one of the most potent methods of analyzing the complete proteome of cells, cell lines, organs and tissues in proteomics studies. It allows a fast overview of changes in cell processes by analysis of the entire protein extracts in any biological and medical research projects. New instrumentation and advanced technologies provide proteomics studies in a wide variety of biological and biomedical questions. Proteomics work is being applied to study antibiotics-resistant strains and human tissues of various brain, lung, and heart diseases. It cumulated in the identification of antigens for the design of new vaccines. These advances in proteomics have been possible through the development of advanced high-resolution 2-DE systems allowing resolution of up to 10 000 protein spots of entire cell lysates in combination with protein identification by new highly sensitive mass spectrometric techniques. The present technological achievements are suited for a high throughput screening of different cell situations. Proteomics may be used to investigate the health effects of radiation and electromagnetic field to clarify possible dangerous alterations in human beings.  相似文献   

10.
Proteomics can be thought of as an attempt to understand the information encoded in genomic sequences from the perspective of proteins; i.e. the structure, function and regulation of biological processes at the protein level. In practice it stands in stark contrast to the hypothesis-driven serial approach practiced in the last century that was so successful for protein chemists and is built on the basic understanding of protein physicochemical properties developed during that era. Proteomics attempts to study biological processes comprehensively or globally by systematic parallel analysis of proteins expressed in a cell. While there are many analytical techniques in use and under development in proteomics, mass spectrometry is currently one of the field's most important discovery-based tools. This article will review some of the current approaches for qualitative and quantitative uses of tandem mass spectrometry in the field of proteomics specifically avoiding a discussion of the use of gel electrophoresis prior to mass spectrometry. Electronic Publication  相似文献   

11.
Urinary proteomics: a tool to discover biomarkers of kidney diseases   总被引:1,自引:0,他引:1  
There is intense interest in applying proteomics to urine analysis in order to promote a better understanding of kidney disease processes, develop new biomarkers for diagnosis and detect early factors that contribute to end-stage renal diseases. This interest creates numerous opportunities as well as challenges. To fulfill this task, proteomics requires, in its different stages of realization, various technological platforms with high sensitivity, high throughput and large automation ability. In this review, we will give an overview of promising proteomic methods that can be used for analyzing urinary proteome and detecting biomarkers for different kidney diseases. Furthermore, we will focus on the current status and future directions in investigating kidney diseases using urinary proteomics.  相似文献   

12.
Avian proteomics: advances, challenges and new technologies   总被引:1,自引:0,他引:1  
Proteomics is defined as an analysis of the full complement of proteins of a cell or tissue under given conditions. Avian proteomics, or more specifically chicken proteomics, has focussed on the study of individual tissues and organs of interest to specific researchers. Researchers have looked at skeletal muscle and growth, and embryonic development and have performed initial studies in avian disease. Traditional proteomics involves identifying and cataloguing proteins in a cell and identifying relative changes in populations between two or more states, be that physiological or disease-induced states. Recent advances in proteomic technologies have included absolute quantification, proteome simplification and the ability to determine the turnover of individual proteins in a global context. This review discusses the current developments in this relatively new field, new technologies and how they may be applied to biological questions, and the challenges faced by researchers in this ever-expanding and exciting field.  相似文献   

13.
Yang XY  Lu J  Sun X  He QY 《Journal of Proteomics》2012,75(10):2803-2810
Gram-positive bacteria cause a series of diseases in human, animals and plants. There has been increasing interest in efforts to investigate pathogenesis of bacteria using multiple "omic" strategies including proteomics. Proteins in different cell fractions of bacteria may play different vital roles in various physiological processes, such as adhesion, invasion, internalization, sensing, respiration, oxidative stress protection and pathogenicity. Subproteomics specifically focuses on the pre-fractionated cellular proteins and thus may be able to characterize more low-abundance molecules that are usually overlooked by the traditional whole-cell proteomics, providing comprehensive information for further investigations. This review intends to outline the current progress, challenges and future development of subproteomics in the characterization of Gram-positive bacteria. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

14.
There is intense interest in applying proteomics to urine analysis in order to promote a better understanding of kidney disease processes, develop new biomarkers for diagnosis and detect early factors that contribute to end–stage renal diseases. This interest creates numerous opportunities as well as challenges. To fulfill this task, proteomics requires, in its different stages of realization, various technological platforms with high sensitivity, high throughput and large automation ability. In this review, we will give an overview of promising proteomic methods that can be used for analyzing urinary proteome and detecting biomarkers for different kidney diseases. Furthermore, we will focus on the current status and future directions in investigating kidney diseases using urinary proteomics.  相似文献   

15.
Hermjakob H 《Proteomics》2006,6(Z2):34-38
Proteomics is a key field of modern biomolecular research, with many small and large scale efforts producing a wealth of proteomics data. However, the vast majority of this data is never exploited to its full potential. Even in publicly funded projects, often the raw data generated in a specific context is analysed, conclusions are drawn and published, but little attention is paid to systematic documentation, archiving, and public access to the data supporting the scientific results. It is often difficult to validate the results stated in a particular publication, and even simple global questions like "In which cellular contexts has my protein of interest been observed?" can currently not be answered with realistic effort, due to a lack of standardised reporting and collection of proteomics data. The Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organisation (HUPO), defines community standards for data representation in proteomics to facilitate systematic data capture, comparison, exchange and verification. In this article we provide an overview of PSI organisational structure, activities, and current results, as well as ways to get involved in the broad-based, open PSI process.  相似文献   

16.
Currently, relatively few proteomics studies of chloroplast have been published, but the field has just started emerging and is likely to develop more rapidly in the future. While the complex membrane structure of the chloroplast makes it difficult to study its entire proteome by global approaches, proteomics has considerably increased our knowledge of the proteins of single compartments such as, for instance, the envelope and the thylakoid lumen. Proteomics has also succeeded in the subunit characterisation of select protein complexes such as the ribosomes and the cytochrome b (6)f complex. In addition, proteomics was successfully applied to find new potential target pathways for thioredoxin-mediated signal transduction. In this review, we present an overview of the latest developments in the field of chloroplast proteomics and discuss their impact on photosynthesis research. In addition, we summarise the current state of research in proteomics of the photosynthetic cyanobactrium Synechocystis sp. PCC 6803.  相似文献   

17.
Long Beach hosted this year's annual congress of the Human Proteome Organisation (HUPO). In addition to the numerous sessions, talks and poster presentations organized by HUPO itself, several events were arranged by the HUPO initiatives. The Brain Proteome Project (HUPO BPP) was very active, initiating three pre-congress workshops: (i) the kick-off meeting of the EU-funded ProDaC consortium (Proteomics Data Collection) that is aiming at the bioinformatics Standardization in the proteomics field; (ii) the workshop "Standardization Issues in Proteomics: Perspectives from Vendors" giving an overview about the lessons learned by proteomics industrial partners; (iii) the 6th HUPO BPP Workshop "New Proteomics Approaches for further HUPO BPP Studies" offering new concepts for brain-related proteomics studies.  相似文献   

18.
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.  相似文献   

19.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

20.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号