首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.  相似文献   

2.
3.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   

4.
Treatment of acute myeloid leukemia (AML), an aggressive and heterogeneous hematological malignancy, remains a challenge. Despite advances in our understanding of the complex genetics and biology of AML pathophysiology, these findings have been translated to the clinic with only limited success, and poor outcomes persist for the majority of patients. Thus, novel treatment strategies are clearly needed for achieving deeper and prolonged remissions and for avoiding the development of resistance. Due to its profound role in (cancer) stem cell biology and differentiation, the Hedgehog (HH)/Glioma-associated Oncogene Homolog (GLI) signaling pathway may be an attractive novel therapeutic target in AML. In this review, we aim to provide a critical and concise overview of the currently known potential and challenges of HH/GLI targeting. We describe the biological role of the HH/GLI pathway in AML pathophysiology. We specifically focus on ways of targeting non-canonical HH/GLI signaling in AML, particularly in combination with standard treatment regimens, which may overcome some hurdles observed with approved HH pathway inhibitors in solid tumors.  相似文献   

5.
Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, Gα-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement.  相似文献   

6.
Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell–cell adhesion and integrin–extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFβ-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.  相似文献   

7.
T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through alpha-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time.  相似文献   

8.
9.
To migrate, normally a cell must establish morphological polarity and continuously protrude a single lamellipodium, polarized in the direction of migration. We have previously shown that actin filament disassembly is necessary for protrusion of the lamellipodium during fibroblast migration. As ADF/cofilin (AC) proteins are essential for the catalysis of filament disassembly in cells, we assessed their role in polarized lamellipodium protrusion in migrating fibroblasts. We compared the spatial distribution of AC and the inactive, phosphorylated AC (pAC) in migrating cells. AC, but not pAC, localized to the lamellipodium. To investigate a role for AC in cell polarity, we increased the proportion of pAC in migrating fibroblasts by overexpressing constitutively active (CA) LIM kinase 1. In 87% of cells expressing CA LIM kinase, cell polarity was abolished. In such cells, the single polarized lamellipodium was replaced by multiple nonpolarized lamellipodia, which, in contrast to nonexpressing migrating cells, stained for pAC. Cell polarity was rescued by coexpressing an active, nonphosphorylatable Xenopus AC (CA XAC) with the CA LIMK. Furthermore, overexpressing a pseudophosphorylated (less active) XAC by itself also abolished cell polarity. We conclude that locally maintaining ADF/cofilin in the active, nonphosphorylated state within the lamellipodium is necessary to maintain polarized protrusion during cell migration.  相似文献   

10.
Protein kinase D (PKD) has been implicated in the regulation of cell shape, adhesion, and migration. At the leading edge of migrating cells active PKD co-localizes with F-actin, Arp3 and cortactin. Platelet derived growth factor (PDGF) activates PKD and recruits the kinase to the leading edge, suggesting a role for PKD in actin remodelling. In support of this, PKD directly interacts with F-actin and phosphorylates cortactin in vitro. Interference with PKD function by overexpression of a dominant negative PKD or by PKD-specific siRNA enhanced cell migration, whereas cells overexpressing PKD wild type displayed reduced migratory potential. Taken together, these data reveal a negative regulatory function of PKD in cell migration.  相似文献   

11.
Cell migration is a complex process that requires the integration of signaling events that occur in distinct locations within the cell. Adaptor proteins, which can localize to different subcellular compartments, where they bring together key signaling proteins, are emerging as attractive candidates for controlling spatially coordinated processes. However, their function in regulating cell migration is not well understood. In this study, we demonstrate a novel role for the adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1) in regulating cell migration. APPL1 impairs migration by hindering the turnover of adhesions at the leading edge of cells. The mechanism by which APPL1 regulates migration and adhesion dynamics is by inhibiting the activity of the serine/threonine kinase Akt at the cell edge and within adhesions. In addition, APPL1 significantly decreases the tyrosine phosphorylation of Akt by the nonreceptor tyrosine kinase Src, which is critical for Akt-mediated cell migration. Thus, our results demonstrate an important new function for APPL1 in regulating cell migration and adhesion turnover through a mechanism that depends on Src and Akt. Moreover, our data further underscore the importance of adaptor proteins in modulating the flow of information through signaling pathways.  相似文献   

12.
During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P(3), the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P(3) asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal.  相似文献   

13.
14.
Summary In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell locomotion. The centrosome is positioned between the leading edge pseudopod and the nucleus. This suggests that the polarized distribution of organelles in the cytoplasm is coupled spatially with structural and functional polarity in the cell cortex. To study cellular polarization with special interest in the roles of microtubules, we have analyzed the effects of microtubule-disrupting reagents and local laser irradiation on behaviors of both the nucleus and the centrosome in living amoebae ofPhysarum polycephalum. Physarum cells often have 2–3 pseudopods. One of the pseudopods keeps extending to become a stable leading edge while the rest retracts, a crucial step that reorients cells during locomotion. The nucleus, together with the centrosome, moves specifically toward the pseudopod that will become the leading edge. Disruption of microtubules with nocodazole randomizes positions of the nucleus, indicating the involvement of microtubules in the directional migration of the nucleus toward a specific pseudopod. The migration direction of the nucleus is reversed immediately after the UV laser is irradiated at regions between the nucleus and the future leading pseudopod. In contrast, irradiation at regions between the future tail and the nucleus does not affect nuclear migration. By immunofluorescence, we confirmed fragmentation of microtubules specifically in the irradiated region. These results suggest that the nucleus is pulled together with the centrosome toward the future leading-edge pseudopod in a microtubule-dependent manner. Microtubules seem to exert the pulling force generated in the cell cortex on the centrosome. They may serve as a mediator of shape changes initiated in the cell cortex to the organelle geometry in the endoplasm.  相似文献   

15.
16.
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.  相似文献   

17.
Intestinal inflammation is associated with epithelial damage and formation of mucosal wounds. Epithelial cells migration is required for wound closure. In inflammatory status, migrating epithelial cells are exposed to proinflammatory cytokines such as IFN-gamma. However, influence of such cytokines on intestinal epithelial wound closure remains unknown. The present study was designed to investigate the effect of IFN-gamma on migration of model T84 intestinal epithelial cells and recovery of epithelial wounds. IFN-gamma significantly inhibited rate of T84 cell migration and closure of epithelial wounds. This effect was accompanied by the formation of large aberrant lamellipodia at the leading edge as well as significant decrease in the number of beta(1) integrin containing focal adhesions. IFN-gamma exposure increased endocytosis of beta(1) integrin and shifted its accumulation from early/recycling endosomes at the leading edge to a yet unidentified compartment at the cell base. This redirection in beta(1) integrin transcytosis was inhibited by depolymerization of microtubules with nocodazole and was unaffected by stabilization of microtubules with docetaxel. These results suggest that IFN-gamma attenuates epithelial wound closure by microtubule-dependent redirection of beta(1) integrin transcytosis from the leading edge of migrating cells thereby inhibiting adequate turnover of focal adhesion complexes and cell migration.  相似文献   

18.
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior–posterior body axis via the inhibition of dorsal–ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain‐of‐function mutant animals for C. elegans RhoG MIG‐2. We identified serine 139 of MIG‐2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG‐2S139. Live imaging analysis of genome‐edited animals indicates that MIG‐2S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild‐type cells, while MIG‐2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG‐mediated polarization. Therefore, we propose that the Hippo–RhoG feedback regulation maintains cell polarity during directional cell motility.  相似文献   

19.
Transendothelial migration (TEM) is a tightly regulated process whereby leukocytes migrate from the vasculature into tissues. Rho guanosine triphosphatases (GTPases) are implicated in TEM, but the contributions of individual Rho family members are not known. In this study, we use an RNA interference screen to identify which Rho GTPases affect T cell TEM and demonstrate that RhoA is critical for this process. RhoA depletion leads to loss of migratory polarity; cells lack both leading edge and uropod structures and, instead, have stable narrow protrusions with delocalized protrusions and contractions. By imaging a RhoA activity biosensor in transmigrating T cells, we find that RhoA is locally and dynamically activated at the leading edge, where its activation precedes both extension and retraction events, and in the uropod, where it is associated with ROCK-mediated contraction. The Rho guanine nucleotide exchange factor (GEF) GEF-H1 contributes to uropod contraction but does not affect the leading edge. Our data indicate that RhoA activity is dynamically regulated at the front and back of T cells to coordinate TEM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号