首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biglycan is a Class I Small Leucine Rich Proteoglycans (SLRP) that is localized on human chromosome Xq28-ter. The conserved nature of its intron-exon structure and protein coding sequence compared to decorin (another Class I SLRP) indicates the two genes may have arisen from gene duplication. Biglycan contains two chondroitin sulfate glycosaminoglycan (GAG) chains attached near its NH2 terminus making it different from decorin that has only one GAG chain. To determine the functions of biglycan in vivo, transgenic mice were developed that were deficient in the production of the protein (knockout). These mice acquire diminished bone mass progressively with age. Double tetracycline-calcein labeling revealed that the biglycan deficient mice are defective in their capacity to form bone. Based on this observation, we tested the hypothesis that the osteoporosis-like phenotype is due to defects in cells critical to the process of bone formation. Our data shows that biglycan deficient mice have diminished capacity to produce marrow stromal cells, the bone cell precursors, and that this deficiency increases with age. The cells also have reduced response to tranforming growth factor- (TGF-), reduced collagen synthesis and relatively more apoptosis than cells from normal littermates. In addition, calvaria cells isolated from biglycan deficient mice have reduced expression of late differentiation markers such as bone sialoprotein and osteocalcin and diminished ability to accumulate calcium judged by alizerin red staining. We propose that any one of these defects in osteogenic cells alone, or in combination, could contribute to the osteoporosis observed in the biglycan knockout mice. Other data suggests there is a functional relationship between biglycan and bone morphogenic protein-2/4 (BMP 2/4) action in controlling skeletal cell differentiation. In order to test the hypothesis that functional compensation can occur between SLRPs, we created mice deficient in biglycan and decorin. Decorin deficient mice have normal bone mass while the double biglycan/decorin knockout mice have more severe osteopenia than the single biglycan indicating redundancy in SLRP function in bone tissue. To further determine whether compensation could occur between different classes of SLRPs, mice were generated that are deficient in both biglycan (class I) and fibromodulin, a class II SLRP highly expressed in mineralizing tissue. These doubly deficient mice had an impaired gait, ectopic calcification of tendons and premature osteoarthritis. Transmission electron microscopy analysis showed that like the decorin and biglycan knockouts, they have severely disturbed collagen fibril structures. Biomechanical analysis of the affected tendons showed they were weaker compared to control animals leading to the conclusion that instability of the joints could be the primary cause of all the skeletal defects observed in the fibromodulin/biglycan knockout mice. These studies present important new animal models for musculoskeletal diseases and provide the opportunity to characterize the network of signals that control tissue integrity and function through SLRP activity. Published in 2003.  相似文献   

2.
Small leucine‐rich proteoglycans (SLRPs), such as decorin and biglycan, regulate the assembly and turnover of collagenous matrix. The aim of the study was to analyse the effect of chronic rosuvastatin treatment on decorin, biglycan and the collagen matrix in ApoE‐deficient mice. Twenty‐week‐old male ApoE‐deficient mice received normal chow or 20 mg rosuvastatin/kg × day for 32 weeks. Subsequently, matrix composition was analysed by histochemistry and immunostaining at the aortic root and in innominate arteries of ApoE deficient mice as well as in human carotid endarterectomy specimens. Immunoblotting of proteoglycans was performed from aortic extracts of ApoE‐deficient mice. Immunohistochemistry and immunoblotting revealed strongly increased decorin and biglycan deposition in atherosclerotic plaques at the aortic root and in innominate arteries. In contrast, versican and perlecan expression was not changed by rosu‐vastatin. Furthermore, matrix metalloproteinase 2 and gelatinolytic activity were decreased in response to rosuvastatin and a condensed collagen‐rich matrix was formed. In carotid endarterectomy specimens of statin‐treated patients increased decorin and biglycan accumulation was detected as well. Drug treatment did not change low‐density lipoprotein (LDL) plasma levels in ApoE‐deficient mice and did not significantly affect lipid retention at the aortic root level as demonstrated by oil‐red O staining and immunohistochemistry of LDL. Long‐term treatment with rosuvastatin caused pronounced remodelling of atherosclerotic plaque matrix characterized specifically by enrichment with SLRPs and formation of a condensed collagen matrix. Therefore, decorin and biglycan might represent novel targets of statin treatment that contribute to a stable plaque phenotype.  相似文献   

3.
Recent analysis of mice deficient in both oxytocin (OT) and cyclooxygenase-1 has shown that OT exerts significant effects on both the ovarian corpus luteum and the uterine myometrium during pregnancy. To better define the roles of OT during pregnancy, we evaluated OT action and OT receptor regulation in wild-type and OT-deficient knockout (KO) mice. Continuous infusion of OT revealed that OT can either delay labor at low doses or initiate preterm labor at high doses. The infusion rates of OT necessary for these effects were reduced in OT KO mice. The dose of OT that delayed labor also delayed the normal decrease in plasma progesterone late in gestation, implicating a primary effect on the corpus luteum. Consistent with this hypothesis, luteal OT receptor expression exceeded that of the myometrium until luteolysis occurred. We propose that the downregulation of OT receptors in the corpus luteum and induction of OT receptors in the myometrium serve to shift the predominant consequence of OT action during murine pregnancy from labor inhibition to labor promotion.  相似文献   

4.
Collagen, the main organic component of bone, is used as a coating on titanium implants and as a scaffold material in bone tissue engineering. Surface modifications of titanium which promote osteoblast adhesion, proliferation and synthesis of collagen by osteoblasts are desirable. One biomimetic approach is the coating of titanium with collagen in fibrillar form. Other organic components of bone may be bound to fibrils and exert additional effects. In this study, the collagen types I-III were compared regarding their ability to bind the proteoglycans decorin and biglycan, which are found in bone. More collagen was bound to collagen II fibrils than to those of types I and III. Therefore, titanium surfaces were coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the effect of the proteoglycans on human primary osteoblast behaviour. In addition, the growth factor TGF-beta1 was adsorbed onto surfaces coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the influence of decorin and biglycan on the effect of TGF-beta1 on osteoblasts. Fibril-bound biglycan and decorin influence primary osteoblast behaviour by themselves. The presence of substrate-bound biglycan or decorin influences the effect of TGF-beta1. These results may be important when designing collagen-based coatings or scaffolds for tissue engineering, including those loaded with growth factors.  相似文献   

5.
Evidence for a functional role for extracellular matrix (ECM) proteins in adipose tissue is demonstrated in dynamic changes in expression of ECM genes during adipocyte differentiation and in obesity. Components of the ECM may regulate adipose cell number expansion by restricting pre-adipocyte proliferation, regulating apoptosis and inhibiting adipogenesis. Although pre-adipocytes express multiple proteoglycans, their role in pre-adipocyte proliferation up to now has remained unknown. The study described here was conducted to characterize roles of small leucine-rich proteoglycans (SLRPs) in adipocyte proliferation. Pre-adipocytes were seeded on plates coated with biglycan and decorin and were allowed to differentiate. In addition, pre-adipocytes were incubated on plates coated with biglycan, decorin, or fibronectin and measurements were made of cell proliferation and apoptosis. We are able to report that SLRPs decorin and biglycan did not affect differentiation of our 3T3-L1 cells; however, biglycan and decorin did reduce proliferation of pre-adipocytes, partly by induction of apoptosis. Furthermore, anti-proliferative capabilities of decorin and biglycan were nullified with removal of GAG side-chains suggesting that the chains played key roles in anti-proliferative effects of the SLRPs. We also found that co-treatment of decorin or biglycan with the proteoglycan fibronectin restored normal proliferation, an indication that multiple ECM proteins may act in concert to regulate overall proliferation rates of pre-adipocytes. These studies indicate that SLRPs may compose a regulatory factor in adipose tissue expansion, through hyperplasia.  相似文献   

6.
Transforming growth factor (TGF)-beta is a key cytokine in the pathogenesis of pulmonary fibrosis, and pharmacological interference with TGF-beta can ameliorate the fibrotic tissue response. The small proteoglycans decorin and biglycan are able to bind and inhibit TGF-beta activity in vitro. Although decorin has anti-TGF-beta properties in vivo, little is known about the physiological role of biglycan in vivo. Adenoviral gene transfer was used to overexpress active TGF-beta, decorin, and biglycan in cell culture and in murine lungs. Both proteoglycans were able to interfere with TGF-beta bioactivity in vitro in a dose-dependant manner. In vivo, overexpression of TGF-beta resulted in marked lung fibrosis, which was significantly reduced by concomitant overexpression of decorin. Biglycan, however, had no significant effect on lung fibrosis induced by TGF-beta. The data suggest that differences in tissue distribution are responsible for the different effects on TGF-beta bioactivity in vivo, indicating that decorin, but not biglycan, has potential therapeutic value in fibrotic disorders of the lung.  相似文献   

7.
Traas AM 《Theriogenology》2008,70(3):337-342
If medical management of dystocia has failed or is inadvisable, a Cesarean section is indicated. The necessity of surgery is primarily based on the condition of the dam, progression of labor, and fetal heart rate. Timely intervention is crucial for optimal fetal and maternal survival. Surgical technique may vary, based on the needs of each individual case. There are many options for each portion of the surgery, including the choice of anesthetic protocol, abdominal approach, uterine incision location, and post-surgical pain management. Indications for surgery and some of the options for each step of the procedure are presented. Episiotomy is rarely used to treat dystocia and therefore, it is discussed only briefly.  相似文献   

8.
The small leucine-rich proteoglycans (PGs) biglycan and decorin, and their mRNAs, have been localized during neonatal development and aging (3 weeks to 2 years) of collateral and cruciate ligaments and of menisci of the rabbit knee joint. In the collateral ligaments, biglycan and decorin are found between the bundles of collagen fibers at all ages. In cruciate ligaments the PGs are primarily around the cells. In neonatal ligaments all the cells express the mRNAs for biglycan and decorin, but in the collateral ligaments the number expressing the mRNAs is reduced at 8 months. In 3--week menisci the PGs are uniformly distributed in the matrix, but by 8 months biglycan is present primarily in the central fibrocartilaginous regions, whereas decorin is found peripherally. In neonates, all the cells express the mRNAs but the number is reduced in 8-month menisci. The results illustrate the precise localizations of biglycan and decorin in healthy rabbit ligaments and menisci which, after injury, must be reproduced in the repair tissue for normal strength to be regained. (J Histochem Cytochem 49:877-885, 2001)  相似文献   

9.
Ameye L  Young MF 《Glycobiology》2002,12(9):107R-116R
Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.  相似文献   

10.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.  相似文献   

11.
The effect of systematically delayed progesterone treatment was examined in 45 pregnant rats near term. Progesterone (P) and prostaglandin F (PGF) were measured in uterine vein plasma and uterine tissue before and during spontaneous labor or during prolonged pregnancy. Control animals exhibited the expected P-withdrawal (Pw) prior to spontaneous labor and properly time P-treatment predictably prevente Pw and labor. However, when P was administered 11.7 ± 2.8 hours (Mean ± S.E.) before spontaneous labor, the animals delivered normally despite increased plasma and tissue P-levels. These observations show that P-concentration can not be equated to P-action. Thus, when high P-levels are measured near term, as in parturient women, the biological ACTION of this hormone on uterine function should be cautiously interpreted.  相似文献   

12.
Decorin and biglycan are closely related abundant extracellular matrix proteoglycans that have been shown to bind to C1q. Given the overall structural similarities between C1q and mannose-binding lectin (MBL), the two key recognition molecules of the classical and the lectin complement pathways, respectively, we have examined functional consequences of the interaction of C1q and MBL with decorin and biglycan. Recombinant forms of human decorin and biglycan bound C1q via both collagen and globular domains and inhibited the classical pathway. Decorin also bound C1 without activating complement. Furthermore, decorin and biglycan bound efficiently to MBL, but only biglycan could inhibit activation of the lectin pathway. Other members of the collectin family, including human surfactant protein D, bovine collectin-43, and conglutinin also showed binding to decorin and biglycan. Decorin and biglycan strongly inhibited C1q binding to human endothelial cells and U937 cells, and biglycan suppressed C1q-induced MCP-1 and IL-8 production by human endothelial cells. In conclusion, decorin and biglycan act as inhibitors of activation of the complement cascade, cellular interactions, and proinflammatory cytokine production mediated by C1q. These two proteoglycans are likely to down-regulate proinflammatory effects mediated by C1q, and possibly also the collectins, at the tissue level.  相似文献   

13.
Fibrosis is a common pathological feature observed in muscles of patients with Duchenne muscular dystrophy (DMD). Biglycan and decorin are small chondroitin/dermatan sulfate proteoglycans in the muscle extracellular matrix (ECM) that belong to the family of structurally related proteoglycans called small leucine-rich repeat proteins. Decorin is considered an anti-fibrotic agent, preventing the process by blocking TGF-beta activity. There is no information about their expression in DMD patients. We found an increased amount of both proteoglycans in the ECM of skeletal muscle biopsies obtained from DMD patients. Both biglycan and decorin were augmented in the perimysium of muscle tissue, but only decorin increased in the endomysium as seen by immunohistochemical analyses. Fibroblasts were isolated from explants obtained from muscle of DMD patients and the incorporation of radioactive sulfate showed an increased synthesis of both decorin and biglycan in cultured fibroblasts compared to controls. The size of decorin and biglycan synthesized by DMD and control fibroblasts seems to be similar in size and anion charge. These findings show that decorin and biglycan are increased in DMD skeletal muscle and suggest that fibroblasts would be, at least, one source for these proteoglycans likely playing a role in the muscle response to dystrophic cell damage.  相似文献   

14.
Preterm birth is the leading cause of newborn mortality in the United States and about one third of cases are caused by preterm premature rupture of fetal membranes, a complication that is frequently observed in patients with Ehlers–Danlos Syndrome. Notably, a subtype of Ehlers–Danlos Syndrome is caused by expression of abnormal biglycan and decorin proteoglycans. As compound deficiency of these two small leucine-rich proteoglycans is a model of preterm birth, we investigated the fetal membranes of Bgn−/−; Dcn−/− double-null and single-null mice. Our results showed that biglycan signaling supported fetal membrane remodeling during early gestation in the absence of concomitant changes in TGFβ levels. In late gestation, biglycan signaling acted in a TGFβ-dependent manner to aid in membrane stabilization. In contrast, decorin signaling supported fetal membrane remodeling at early stages of gestation in a TGFβ-dependent manner, and fetal membrane stabilization at later stages of gestation without changes in TGFβ levels. Furthermore, exogenous soluble decorin was capable of rescuing the TGFβ signaling pathway in fetal membrane mesenchymal cells. Collectively, these findings provide novel targets for manipulation of fetal membrane extracellular matrix stability and could represent novel targets for research on preventive strategies for preterm premature rupture of fetal membranes.  相似文献   

15.
Osteoarthritis (OA), the commonest form of arthritis and a major cause of morbidity, is characterized by progressive degeneration of the articular cartilage. Along with increased production and activation of degradative enzymes, altered synthesis of cartilage matrix molecules and growth factors by resident chondrocytes is believed to play a central role in this pathological process. We used an ovine meniscectomy model of OA to evaluate changes in chondrocyte expression of types I, II and III collagen; aggrecan; the small leucine-rich proteoglycans (SLRPs) biglycan, decorin, lumican and fibromodulin; transforming growth factor-β; and connective tissue growth factor. Changes were evaluated separately in the medial and lateral tibial plateaux, and were confirmed for selected molecules using immunohistochemistry and Western blotting. Significant changes in mRNA levels were confined to the lateral compartment, where active cartilage degeneration was observed. In this region there was significant upregulation in expession of types I, II and III collagen, aggrecan, biglycan and lumican, concomitant with downregulation of decorin and connective tissue growth factor. The increases in type I and III collagen mRNA were accompanied by increased immunostaining for these proteins in cartilage. The upregulated lumican expression in degenerative cartilage was associated with increased lumican core protein deficient in keratan sulphate side-chains. Furthermore, there was evidence of significant fragmentation of SLRPs in both normal and arthritic tissue, with specific catabolites of biglycan and fibromodulin identified only in the cartilage from meniscectomized joints. This study highlights the focal nature of the degenerative changes that occur in OA cartilage and suggests that altered synthesis and proteolysis of SLRPs may play an important role in cartilage destruction in arthritis.  相似文献   

16.

Background  

Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition.  相似文献   

17.
The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.  相似文献   

18.
Decorin is a multifunctional small leucine-rich proteoglycan involved in the regulation of collagen fibrillogenesis. In patients with a variant of Ehlers-Danlos syndrome, about half of the secreted decorin lacks the single glycosaminoglycan side chain. Notably, these patients have a skin-fragility phenotype that resembles that of decorin null mice. In this study, we investigated the role of glycanated and unglycanated decorin on collagen fibrillogenesis. Glycosaminoglycan-free decorin, generated by mutating Ser4 of the mature protein core into Ala (DCN-S4A), showed reduced inhibition of fibrillogenesis compared with the decorin proteoglycan. Interestingly, using a 3D matrix generated by decorin-null fibroblasts, an increase in fibril diameter was found after the addition of decorin, and even greater effects were observed with DCN-S4A. To avoid potential side effects of artificial tags, adenoviruses containing decorin and DCN-S4A were used to transduce decorin-null fibroblasts prior to matrix formation. Both molecules were efficiently incorporated into the matrix, with no changes in collagen composition and network formation, or altered expression of the related proteoglycan biglycan. Both decorin and DCN-S4A mutants increased the collagen fibril diameter, with the latter showing the most prominent effects. These data show that at early stages of fibrillogenesis, the glycosaminoglycan chain of decorin has a reducing effect on collagen fibril diameter.  相似文献   

19.
The metabolism of the chondroitin/dermatan sulfate (CS/DS) proteoglycans (PGs) decorin and biglycan is markedly altered during short-term (3-6 weeks) and long-term (40 weeks-2 years) repair of surgically ruptured medial collateral ligaments from mature rabbits. A PG-rich extracellular matrix accumulates in injury gaps by 3 weeks postsurgery and extends into tissue regions containing the original ligaments, and elevated PG levels remain apparent up to 2 years postinjury. CS/DS PGs were prepared from such ligaments and identified after SDS-polyacrylamide gel electrophoresis by Alcian blue staining or immunoblotting. In normal ligaments, decorin is the most abundant proteoglycan (accounting for approximately 80% of the total); the remainder is biglycan and a large PG, possibly versican. In repairing ligaments, decorin is barely detected, but instead a large proteoglycan and abundant amounts of biglycan accumulate. Biglycan is present in two forms in repairing ligaments, and they can be separated on SDS-PAGE into 200- and 140-kDa forms. The slower migrating species is absent in normal ligaments and may represent a different glycoform (containing either a single or two short chondroitin/dermatan sulfate chains) of biglycan. Alteration in PG expression and posttranslational processing during medial collateral ligament repair are similar to those reported for repair and scar formation of other connective tissues. The accumulation of biglycan observed here may interfere with proper collagen network remodeling and may lead to persistent inflammatory and matrix turnover processes, thus preventing restoration of a long-term functional ligament tissue.  相似文献   

20.
The family of small interstitial chondroitin/dermatan sulfate proteoglycans consists of at least three different molecular species: biglycan (proteoglycan I), decorin (proteoglycan II), and proteoglycan-100, which has a glycosylated core protein of about 100 kDa. The core protein of decorin has been shown to be responsible for receptor-mediated endocytosis of this proteoglycan species by a variety of mesenchymal cells. It is now demonstrated that skin fibroblasts and articular chondrocytes endocytose biglycan with an efficiency similar to that of decorin. Uptake of biglycan is also mediated by its core protein and can be inhibited by decorin in a partially competitive manner. In human fibroblasts, endosomal proteins of 51 and 26 kDa, which are known to bind decorin core protein, also interact with biglycan. This interaction can be inhibited by decorin. Bovine articular chondrocytes contained binding proteins of 48 and 25 kDa. Proteoglycan-100 can be distinguished from biglycan and decorin by its low clearance rate, which however, exceeds the rate of fluid phase endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号