首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%-50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an "open-source" method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.  相似文献   

2.
Engineered nucleases, which incise the genome at predetermined sites, have a number of laboratory and clinical applications. There is, however, a need for better methods for controlled intracellular delivery of nucleases. Here, we demonstrate a method for ligand-mediated delivery of zinc finger nucleases (ZFN) proteins using transferrin receptor-mediated endocytosis. Uptake is rapid and efficient in established mammalian cell lines and in primary cells, including mouse and human hematopoietic stem-progenitor cell populations. In contrast to cDNA expression, ZFN protein levels decline rapidly following internalization, affording better temporal control of nuclease activity. We show that transferrin-mediated ZFN uptake leads to site-specific in situ cleavage of the target locus. Additionally, despite the much shorter duration of ZFN activity, the efficiency of gene correction approaches that seen with cDNA-mediated expression. The approach is flexible and general, with the potential for extension to other targeting ligands and nuclease architectures.  相似文献   

3.
We have developed an improved and rapid genomic engineering procedure for the construction of custom-designed microorganisms. This method, which can be performed in 2 days, permits restructuring of the Escherichia coli genome via markerless deletion of selected genomic regions. The deletion process was mediated by a special plasmid, pREDI, which carries two independent inducible promoters: (i) an arabinose-inducible promoter that drives expression of λ-Red recombination proteins, which carry out the replacement of a target genomic region with a marker-containing linear DNA cassette, and (ii) a rhamnose-inducible promoter that drives expression of I-SceI endonuclease, which stimulates deletion of the introduced marker by double-strand breakage-mediated intramolecular recombination. This genomic deletion was performed successively with only one plasmid, pREDI, simply by changing the carbon source in the bacterial growth medium from arabinose to rhamnose. The efficiencies of targeted region replacement and deletion of the inserted linear DNA cassette were nearly 70 and 100%, respectively. This rapid and efficient procedure can be adapted for use in generating a variety of genome modifications.  相似文献   

4.
5.
6.
7.
CcrM is one of the solitary bacterial DNA methyltransferases which does not have corresponding restriction enzymes. We established a stable ccrM-overexpressing mutant of Mesorhizobium loti, MlccrM-OX, and performed molecular and phenotypic characterization of this strain. In the M. loti MlccrM-OX infected plants, nodulation was apparently delayed at 7 days after inoculation (dai), however, the nodules that eventually formed on the MlccrM-OX roots showed nitrogen fixing ability by at least 21 dai. These results suggest that the initial morphogenic events were affected by ccrM-overexpression and that the correct pattern of DNA methylation of the bacterial genome is not essential for plant-microbe symbiosis, but are required for efficient nodulation.  相似文献   

8.
9.
正Most of the important agronomic traits in crop plants,such as yield,quality and stress response,are quantitative and jointly controlled by many genomic loci or major genes.Improving these complex traits depends on the combination of beneficial alleles at the quantitative trait loci(QTLs).However,the conventional cross breeding method is extremely time-consuming and laborious for pyramiding multiple QTLs.In certain cases,this approach might  相似文献   

10.
l-天冬酰胺酶能够水解l-天冬酰胺生成l-天冬氨酸和氨,广泛存在于微生物、植物和部分啮齿类动物的血清中,在医药和食品行业中都具有重要应用。然而无论是在医药还是在食品行业中,l-天冬酰胺酶依然存在一些问题,如催化效率低、热稳定性差、产量低等。文中通过理性设计及5′非翻译区 (5′ untranslated region, 5′ UTR)改造提高米黑根毛霉Rhizomucor miehei来源的l-天冬酰胺酶 (RmAsnase) 的酶活及蛋白表达量。结果显示,通过同源建模结合序列比对分析构建的6个突变菌株中,突变酶A344E比酶活较野生酶提高了1.5倍。继而构建食品安全菌株枯草芽孢杆菌Bacillus subtilis 168/pMA5-A344E,对其进行UTR改造,获得重组菌株B. subtilis 168/pMA5 UTR-A344E,其酶活较原始菌提高了7.2倍,对重组菌B. subtilis 168/pMA5 UTR-A344E进行5 L罐研究,最终产量为489.1 U/mL。该酶活提高的重组菌株对l-天冬酰胺酶的工业化应用具有重要价值。  相似文献   

11.
12.
13.
Rapid screening of highly efficient vaccine candidates by immunoproteomics   总被引:12,自引:0,他引:12  
Chen Z  Peng B  Wang S  Peng X 《Proteomics》2004,4(10):3203-3213
Diseases caused by microorganisms can be controlled by vaccines, which require neutralizing antigens. Therefore, it is very important to identify highly efficient immunogens for immune prevention. By combining immunoproteomics and bacterial challenge after immunization, we developed a rapid method for screening protected antigens of pathogenic bacteria in aquaculture. Our approach may be divided into three consecutive steps. First, dominant immunogens of outer membrane proteins are screened by immunoproteomics. Second, proteins with the ability to induce production of neutralizing antibodies are identified from the immunogens by virulent bacterium challenge following vaccination. Third, vaccine candidates are determined by evaluation of neutralizing abilities. Information on the candidates has been obtained for further gene cloning by mass spectrometry. Our results indicate that highly efficient protected antigens were identified from the outer membrane proteome of Aeromonas hydrophila, in which an immunogen showed 71.4% protective ability with multivalent functions to A. hydrophila and Aeromonas sobria. In summary, we have developed a high-throughout, accurate, rapid and highly efficient method which will play an active role in immune prevention for microbiological diseases.  相似文献   

14.
Blank K  Hensel M  Gerlach RG 《PloS one》2011,6(1):e15763
Direct manipulation of bacterial chromosomes by recombination-based techniques has become increasingly important for both cognitive and applied research. Here we demonstrate, for the first time, the combination of the Red recombinase system with I-SceI endonuclease-based selection of successful recombinants after electroporation with short synthetic oligonucleotides. We show the generation of scarless gene knockouts as well as site-directed mutagenesis using the Salmonella virulence-associated two component signaling system PhoPQ. The presented approach is very versatile for generating in-frame deletions, point mutations or insertions within bacterial chromosomes.  相似文献   

15.

Background  

Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes.  相似文献   

16.
Use of designer nucleases for targeted gene and genome editing in plants   总被引:3,自引:0,他引:3  
The ability to efficiently inactivate or replace genes in model organisms allowed a rapid expansion of our understanding of many of the genetic, biochemical, molecular and cellular mechanisms that support life. With the advent of new techniques for manipulating genes and genomes that are applicable not only to single‐celled organisms, but also to more complex organisms such as animals and plants, the speed with which scientists and biotechnologists can expand fundamental knowledge and apply that knowledge to improvements in medicine, industry and agriculture is set to expand in an exponential fashion. At the heart of these advancements will be the use of gene editing tools such as zinc finger nucleases, modified meganucleases, hybrid DNA/RNA oligonucleotides, TAL effector nucleases and modified CRISPR/Cas9. Each of these tools has the ability to precisely target one specific DNA sequence within a genome and (except for DNA/RNA oligonucleotides) to create a double‐stranded DNA break. DNA repair to such breaks sometimes leads to gene knockouts or gene replacement by homologous recombination if exogenously supplied homologous DNA fragments are made available. Genome rearrangements are also possible to engineer. Creation and use of such genome rearrangements, gene knockouts and gene replacements by the plant science community is gaining significant momentum. To document some of this progress and to explore the technology's longer term potential, this review highlights present and future uses of designer nucleases to greatly expedite research with model plant systems and to engineer genes and genomes in major and minor crop species for enhanced food production.  相似文献   

17.
18.
19.
The MerR family of transcriptional regulators   总被引:1,自引:0,他引:1  
  相似文献   

20.
The Lrp family of transcriptional regulators   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号