首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Chlamydia are obligate intracellular bacteria that cause variety of human diseases. Host cells infected with Chlamydia are protected against many different apoptotic stimuli. The induction of apoptosis resistance is thought to be an important immune escape mechanism allowing Chlamydia to replicate inside the host cell. Infection with C. trachomatis activates the Raf/MEK/ERK pathway and the PI3K/AKT pathway. Here we show that inhibition of these two pathways by chemical inhibitors sensitized C. trachomatis infected cells to granzyme B-mediated cell death. Infection leads to the Raf/MEK/ERK-mediated up-regulation and PI3K-dependent stabilization of the anti-apoptotic Bcl-2 family member Mcl-1. Consistently, interfering with Mcl-1 up-regulation sensitized infected cells for apoptosis induced via the TNF receptor, DNA damage, granzyme B and stress. Our data suggest that Mcl-1 up-regulation is primarily required to maintain apoptosis resistance in C. trachomatis-infected cells.  相似文献   

2.
3.
4.
Gastrointestinal bacterial pathogens such as enteropathogenic Escherichia coli, Salmonella and Shigella control inflammatory and apoptotic signaling in human intestinal cells to establish infection, replicate and disseminate to other hosts. These pathogens manipulate host cell signaling through the translocation of virulence effector proteins directly into the host cell cytoplasm, which then target various signaling pathways. Death receptors such as TNFR1, FAS and TRAIL-R induce signaling cascades that are crucial to the clearance of pathogens, and as such are major targets for inhibition by pathogens. This review focuses on what is known about how bacterial gut pathogens inhibit death receptor signaling to suppress inflammation and prevent apoptosis.  相似文献   

5.
6.
Chlamydiae are obligate intracellular bacterial pathogens that cause trachoma, sexually transmitted diseases and respiratory infections in humans. Fragmentation of the host cell Golgi apparatus (GA) is essential for chlamydial development, whereas the consequences for host cell functions, including cell migration are not well understood. We could show that Chlamydia trachomatis‐infected cells display decelerated migration and fail to repopulate monolayer scratch wounds. Furthermore, infected cells lost the ability to reorient the fragmented GA or the microtubule organization centre (MTOC) after a migratory stimulus. Silencing of golgin‐84 phenocopied this defect in the absence of the infection. Interestingly, GA stabilization via knockdown of Rab6A and Rab11A improved its reorientation in infected cells and it was fully rescued after inhibition of Golgi fragmentation with WEHD‐fmk. These results show that C. trachomatis infection perturbs host cell migration on multiple levels, including the alignment of GA and MTOC.  相似文献   

7.
The obligate intracellular bacterial pathogen Chlamydia pneumoniae (Cp) is responsible for a range of human diseases, including acute respiratory infection. Although experimental intratracheal infection with Cp results in a massive recruitment of neutrophil granulocytes (polymorphonuclear neutrophils (PMN)), the role of these cells in the defense against Cp is unclear. In this study the interactions of PMN with Cp were investigated. In vitro coincubation experiments showed that human granulocytes were able to internalize Chlamydia in an opsonin-independent manner. Importantly, phagocytosed Cp were not killed; the ingested bacteria survived and multiplied within PMN. Although uninfected granulocytes became apoptotic within 10 h, infected PMN survived up to 90 h. Coincubation with Cp significantly decreased the ratio of apoptotic PMN, as detected by morphological analysis, annexin V, and TUNEL staining. The observed antiapoptotic effect was associated with a markedly lower level of procaspase-3 processing and, consequently, reduced caspase-3 activity in infected PMN. LPS was found as a major, but not exclusive, component responsible for the observed antiapoptotic effect. Chlamydia LPS affected PMN apoptosis both by acting directly on the cells and by inducing the autocrine production of the antiapoptotic cytokine IL-8. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, Cp can extend the life span of neutrophil granulocytes, making them suitable host cells for survival and multiplication within the first hours/days after infection.  相似文献   

8.
In order to better understand the host response to an infection with Neisseria gonorrhoeae, microarray technology was used to analyse the gene expression profile between uninfected and infected human urethral epithelium. The anti-apoptotic genes bfl-1, cox-2 and c-IAP-2 were identified to be upregulated approximately eight-, four- or twofold, respectively, following infection. Subsequent assays including RT-PCR, real time RT-PCR and RNase protection confirmed the increased expression of these apoptotic regulators, and identified that a fourth anti-apoptotic factor, mcl-1, is also upregulated. RT-PCR and RNase protection also showed that key pro-apoptotic factors including bax, bad and bak do not change in expression. Furthermore, our studies demonstrated that infection with the gonococcus partially protects urethral epithelium from apoptosis induced by the protein kinase inhibitor, staurosporine (STS). This work shows that following infection with Neisseria gonorrhoeae, several host anti-apoptotic factors are upregulated. In addition, a gonococcal infection protects host cells from subsequent STS-induced death. The regulation of host cell death by the gonococcus may represent a mechanism employed by this pathogen to survive and proliferate in host epithelium.  相似文献   

9.
10.
11.
The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane-associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium.  相似文献   

12.
Mycobacterium kansasii (Mk) is an emerging pathogen that causes a pulmonary disease similar to tuberculosis. Macrophage apoptosis contributes to innate host defense against mycobacterial infection. Recent studies have suggested that lithium significantly enhances the cytotoxic activity of death stimuli in many cell types. We examined the effect of lithium on the viability of host cells and intracellular Mk in infected macrophages. Lithium treatment resulted in a substantial reduction in the viability of intracellular Mk in macrophages. Macrophage cell death was significantly enhanced after adding lithium to Mk-infected cells but not after adding to uninfected macrophages. Lithium-enhanced cell death was due to an apoptotic response, as evidenced by augmented DNA fragmentation and caspase activation. Reactive oxygen species were essential for lithium-induced apoptosis. Intracellular scavenging by N-acetylcysteine abrogated the lithium-mediated decrease in intracellular Mk growth as well as apoptosis. These data suggest that lithium is associated with control of intracellular Mk growth through modulation of the apoptotic response in infected macrophages.  相似文献   

13.
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria‐derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.  相似文献   

14.
Infected epithelial cells, which act as a first barrier against pathogens, seldom undergo apoptosis. Rather, infected epithelial cells undergo a slow cell death that displays hallmarks of necrosis. Here, we demonstrate that rapid intracellular lysis of Shigella flexneri, provoked by either the use of a diaminopimelic acid auxotroph mutant or treatment of infected cells with antibiotics of the beta-lactam family, resulted in a massive and rapid induction of apoptotic cell death. This intracellular bacteriolysis-mediated apoptotic death (IBAD) was characterized by the specific involvement of the mitochondrial-dependent cytochrome c/Apaf-1 axis that resulted in the activation of caspases-3, -6 and -9. Importantly, Bcl-2 family members and the NF-kappaB pathway seemed to be critical modulators of IBAD. Finally, we identified that IBAD was also triggered by Salmonella enterica serovar Typhimurium but not by the Gram-positive bacteria, Listeria monocytogenes. Together, our results demonstrate that, contrary to previous findings, epithelial cells are intrinsically able to mount an efficient apoptotic cell death response following infection. Indeed, apoptosis in normal circumstances is masked by powerful anti-apoptotic mechanisms, which are overcome in IBAD. Our results also uncover an unexpected consequence of the treatment of infected cells with certain classes of antibiotics.  相似文献   

15.
Pyroptosis and host cell death responses during Salmonella infection   总被引:3,自引:0,他引:3  
Salmonella enterica are facultatively intracellular pathogens causing diseases with markedly visible signs of inflammation. During infection, Salmonella interacts with various host cell types, often resulting in death of those cells. Salmonella induces intestinal epithelial cell death via apoptosis, a cell death programme with a notably non-inflammatory outcome. In contrast, macrophage infection triggers caspase-1-dependent proinflammatory programmed cell death, a recently recognized process termed pyroptosis, which is distinguished from other forms of cellular demise by its unique mechanism, features and inflammatory outcome. Rapid macrophage pyroptosis depends on the Salmonella pathogenicity island-1 type III secretion system (T3SS) and flagella. Salmonella dynamically modulates induction of macrophage pyroptosis, and regulation of T3SS systems permits bacterial replication in specialized intracellular niches within macrophages. However, these infected macrophages later undergo a delayed form of caspase-1-dependent pyroptosis. Caspase-1-deficient mice are more susceptible to a number of bacterial infections, including salmonellosis, and pyroptosis is therefore considered a generalized protective host response to infection. Thus, Salmonella-induced pyroptosis serves as a model to understand a broadly important pathway of proinflammatory programmed host cell death: examining this system affords insight into mechanisms of both beneficial and pathological cell death and strategies employed by pathogens to modulate host responses.  相似文献   

16.
Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.  相似文献   

17.
18.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro‐apoptotic and non‐apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro‐apoptotic signal of TNF involves the activation of caspase‐8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis‐infected cells, TNF‐induced apoptosis was blocked upstream of caspase‐8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase‐8 activation, cFLIP, was targeted by RNAi. However, when caspase‐8 was directly activated by experimental over‐expression of its upstream adapter Fas‐associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non‐apoptotic TNF‐signalling, particularly the activation of NF‐κB, initiates at the plasma membrane, while the activation of caspase‐8 and pro‐apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis‐infected cells, NF‐κB activation through TNF was unaffected, while the internalization of the TNF–TNF‐receptor complex was blocked, explaining the lack of caspase‐8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis‐infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non‐apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.  相似文献   

19.

Background

Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit.

Results

The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed.

Conclusions

The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.  相似文献   

20.
《Autophagy》2013,9(1):177-178
Coxiella burnetii is an obligate intracellular bacterium that generates large vacuoles in which this pathogen replicates and survives. We have previously demonstrated that C. burnetii interacts with the autophagic pathway as a strategy for its survival and replication. Coxiella displays an anti-apoptotic activity to maintain host cell viability, leading to a persistent infection. Our recent study reveals that Beclin 1 is recruited to the Coxiella-membrane vacuole favoring its development and bacterial replication. In contrast, the anti-apoptotic protein Bcl-2 alters the normal development of the Coxiella-replicative compartment. In addition, our results indicate that C. burnetii infection modulates autophagy and apoptotic pathways via Beclin 1-Bcl-2 interplay to establish a successful infection in the host cell. Of note, this pathogen-host cell model has allowed uncovering a novel function of Beclin 1 as a regulator of the anti-apoptotic activity of Bcl-2. We have also established that a proper interplay between Beclin 1 and Bcl-2 is required for both autophagy and apoptosis modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号