首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
How growth regulators provoke context-specific signals is a fundamental question in developmental biology. In plants, both auxin and brassinosteroids (BRs) promote cell expansion, and it was thought that they activated this process through independent mechanisms. In this work, we describe a shared auxin:BR pathway required for seedling growth. Genetic, physiological, and genomic analyses demonstrate that response from one pathway requires the function of the other, and that this interdependence does not act at the level of hormone biosynthetic control. Increased auxin levels saturate the BR-stimulated growth response and greatly reduce BR effects on gene expression. Integration of these two pathways is downstream from BES1 and Aux/IAA proteins, the last known regulatory factors acting downstream of each hormone, and is likely to occur directly on the promoters of auxin:BR target genes. We have developed a new approach to identify potential regulatory elements acting in each hormone pathway, as well as in the shared auxin:BR pathway. We show that one element highly overrepresented in the promoters of auxin- and BR-induced genes is responsive to both hormones and requires BR biosynthesis for normal expression. This work fundamentally alters our view of BR and auxin signaling and describes a powerful new approach to identify regulatory elements required for response to specific stimuli.  相似文献   

3.
BRI1-Associated Receptor Kinase 1 (BAK1) is a leucine-rich repeat serine/threonine receptor-like kinase (LRR-RLK) that is involved in multiple developmental pathways, such as brassinosteroid (BR) signaling, plant immunity and cell death control in plants. Because the roundish and compact rosette leaves of bak1 mutant plants are characteristic phenotypes for deficient BR signaling, we screened genetic suppressors of bak1 according to changes in leaf shape to identify new components that may be involved in BAK1-mediated BR signaling using the activation-tagging method. Here, we report bak1-SUP1, which exhibited longer and narrower rosette leaves and an increased BR sensitivity compared with those of bak1. Analyses of the T-DNA insertional site and the gene expression that was affected by the T-DNA insertion revealed that a microRNA, namely, miR172, over-accumulates in bak1-SUP1. Detailed phenotypic analyses of bak1-SUP1 and a single mutant in which the bak1 mutation was segregated out (miR172-D) revealed that the overexpression of miR172 promotes leaf length elongation in adult plants and increases the root and hypocotyl growth during the seedling stage compared with that of wild type plants. Taken together with its increased BR sensitivity, these results suggest that miR172 regulates vegetative growth patterns by modulating BR sensitivity as well as by the previously identified developmental phase transition.  相似文献   

4.
Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene family similar to BAS1/CYP734A1 that regulates BR inactivation. shk1-D has short hypocotyls in both light and dark, and short petioles and siliques. The seeds are also shortened along the longitudinal axis indicating CYP72C1 controls cell elongation. The expression of CPD, TCH4 and BAS1 were altered in CYP72C1 overexpression transgenic lines and endogenous levels of castasterone, 6-deoxocastasterone and 6-deoxotyphasterol were also altered. Unlike BAS1/CYP734A1 the expression of CYP72C1 was not changed by application of exogenous brassinolide. We propose that CYP72C1 controls BR homeostasis by modulating the concentration of BRs.  相似文献   

5.
6.
7.
8.
Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor‐like cytoplasmic kinase sub‐family (RLCK‐XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T‐DNA insertion lines for eight BSK genes (BSK1–BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24‐epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR‐responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3‐like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3‐like kinases.  相似文献   

9.
10.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   

11.
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  相似文献   

12.
The Arabidopsis DEETIOLATED2 (DET2) gene has been cloned and shown to encode a protein that shares significant sequence identity with mammalian steroid 5 alpha-reductases. Loss of DET2 function causes many defects in Arabidopsis development that can be rescued by the application of brassinolide; therefore, we propose that DET2 encodes a reductase that acts at the first step of the proposed biosynthetic pathway--in the conversion of campesterol to campestanol. Here, we used biochemical measurements and biological assays to determine the precise biochemical defect in det2 mutants. We show that DET2 actually acts at the second step in brassinolide biosynthesis in the 5 alpha-reduction of (24R)-24-methylcholest-4-en-3-one, which is further modified to form campestanol. In feeding experiments using 2H6-labeled campesterol, no significant level of 2H6-labeled campestanol was detected in det2, whereas the wild type accumulated substantial levels. Using gas chromatography-selected ion monitoring analysis, we show that several presumed null alleles of det2 accumulated only 8 to 15% of the wild-type levels of campestanol. Moreover, in det2 mutants, the endogenous levels of (24R)-24-methylcholest-4-en-3-one increased by threefold, whereas the levels of all other measured brassinosteroids accumulated to < 10% of wild-type levels. Exogenously applied biosynthetic intermediates of brassinolide were found to rescue both the dark- and light-grown defects of det2 mutants. Together, these results refine the original proposed pathway for brassinolide and indicate that mutations in DET2 block the second step in brassinosteroid biosynthesis. These results reinforce the utility of combining genetic and biochemical analyses to studies of biosynthetic pathways and strengthen the argument that brassinosteroids play an essential role in Arabidopsis development.  相似文献   

13.
The interaction between the plant hormones, brassinosteroids and auxins has been documented in various processes using a variety of plants and plant parts. In this study, detached inflorescences from brassinosteroid biosynthesis and signaling Arabidopsis mutants were evaluated for their gravitropic bending in response to epibrassinolide (EBR) and indole-3-acetic acid (IAA). EBR supplied to the base of detached inflorescences stimulated gravitropic bending in all BR biosynthetic mutants but there was no effect on the BR signaling mutant or wild type plants. When IAA was supplied to the base of BR mutant inflorescences both natural and EBR-induced gravitropic bending was inhibited. Treatment with the auxin inhibitors also decreased both natural and EBR-induced gravitropic bending. No gravitropic bending was observed when the apical tips of BR mutant inflorescences were removed. IAA treatment to the tips of decapitated BR mutant inflorescences restored gravitropic bending to values observed in the inflorescences with an apical tip, however, EBR applied to the tip had no effect. When decapitated inflorescences from BR mutants were treated with IAA to the base and either gel, EBR or IAA was applied to the tip; there was no gravitropic bending. These results show that brassinosteroids have a role in the gravitropic bending response in Arabidopsis and mutants serve to uncover this hidden contributor.  相似文献   

14.
The plasma membrane-spanning receptor brassinosteroid insenstive 1 (BRI1) rapidly induces plant cell wall expansion in response to brassinosteroids such as brassinolide (BL). Wall expansion is accompanied by a rapid hyperpolarization of the plasma membrane, which is recordable by measuring the fluorescence lifetime (FLT) of the green fluorescent protein (GFP) fused to BRI1. For the BL induction of hyperpolarization and wall expansion, the activation of the plasma membrane P-type H+-ATPase is necessary. Furthermore, the activation of the P-ATPase requires BRI1 kinase activity and appears to be mediated by a BL-modulated association of BRI1 with the proton pump. Here, we show that BRI1 also associates with a mutant version of the Arabidopsis P-ATPase 1 (AHA1) characterized by an exchange of a well-known regulatory threonine for a non-phosphorylatable residue in the auto-inhibitory C-terminal domain. Even more important, BRI1 is still able to activate this AHA1 mutant in response to BL. This suggests a novel mechanism for the enzymatic activation of the P-ATPase by BRI1 in the plasma membrane. Furthermore, we demonstrate that the FLT of BRI1-GFP can be used as a non-invasive probe to analyze long-distance BL signaling in Arabidopsis seedlings.Key words: BRI1, fluorescence lifetime, membrane potential, P-ATPase, cell wall expansionUsing spectro-microscopic technologies, we recently started the quantitative analysis of the properties and subcellular function of GFP fusion of the plasma membrane-localized brassinosteroid (BR) receptor, BRI1, in living plant cells of Arabidopsis thaliana and tobacco (Nicotiana benthamiana) leaf cells.1,2 Brassinosteroids, such as brassinolide (BL), are involved in responses to biotic and abiotic stresses and developmental processes, including cell elongation.3 The present model of the BR response pathway includes the binding of BRs to BRI1, resulting in the autophosphorylation of the receptor and the subsequent recruitment of the co-receptor BRI1-associated receptor kinase 1 (BAK1). This association is followed by trans-phosphorylation between BRI1 and BAK1 and results in the activation of downstream BR signaling processes leading to differential gene expression and, finally, to the execution of the specific responses.4 However, the molecular events that take place in the plasma membrane immediately after the perception of BL and initiate cell elongation still have to be included in this model.5 We recently reported a rapid BRI1-GFP-dependent cell wall expansion in Arabidopsis seedlings, which is attributed to wall loosening and water incorporation into the wall, and precedes cell elongation.1,2 This expansion response was accompanied by a change in the FLT of BRI1-GFP, which reflects an alteration in the plasma membrane potential (Em).2,6 For both the FLT change in BRI1-GFP and the wall expansion, the activity of the plasma membrane P-ATPase is crucial. Notably, H+-pump activation was shown to depend on the kinase activity of BRI1.2 This suggests a fast BRI1-dependent response pathway in the plasma membrane which links BL perception via P-ATPase activation and Em hyperpolarization to wall expansion. In this report, we demonstrate that the phosphorylation of a conserved threonine in the auto-inhibitory domain of AHA1 is not required for the enzymatic activation by BRI1 suggesting a novel mechanism by which BRI1 may initiate the activation of the P-ATPase. Furthermore, we show that the FLT of BRI1-GFP is a useful and senstitive probe for the non-invasive analysis of systemic signaling processes in living plants.  相似文献   

15.
16.
17.
18.
BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling   总被引:48,自引:0,他引:48  
Nam KH  Li J 《Cell》2002,110(2):203-212
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.  相似文献   

19.
Li J  Wen J  Lease KA  Doke JT  Tax FE  Walker JC 《Cell》2002,110(2):213-222
Brassinosteroids regulate plant growth and development through a protein complex that includes the leucine-rich repeat receptor-like protein kinase (LRR-RLK) brassinosteroid-insensitive 1 (BRI1). Activation tagging was used to identify a dominant genetic suppressor of bri1, bak1-1D (bri1-associated receptor kinase 1-1Dominant), which encodes an LRR-RLK, distinct from BRI1. Overexpression of BAK1 results in elongated organ phenotypes, while a null allele of BAK1 displays a semidwarfed phenotype and has reduced sensitivity to brassinosteroids (BRs). BAK1 is a serine/threonine protein kinase, and BRI1 and BAK1 interact in vitro and in vivo. Expression of a dominant-negative mutant allele of BAK1 causes a severe dwarf phenotype, resembling the phenotype of null bri1 alleles. These results indicate BAK1 is a component of BR signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号