首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC) is an important signal transduction protein whose cysteine-rich regulatory domain C1 has been proposed to interact with general anesthetics in both of its diacylglycerol/phorbol ester-binding subdomains, the tandem repeats C1A and C1B. Previously, we identified an allosteric binding site on one of the two cysteine-rich domains, PKCdelta C1B. To test the hypothesis that there is an additional anesthetic site on the other cysteine-rich subdomain, C1A, we subcloned, expressed in Escherichia coli, purified, and characterized mouse PKCdelta C1A. Octanol and butanol both quenched the intrinsic fluorescence of PKCdelta C1A in a saturable manner, suggesting the presence of a binding site. To locate this site, PKCdelta C1A was photolabeled with three diazirine-containing alkanols, 3-azioctanol, 7-azioctanol, and 3-azibutanol. Mass spectrometry revealed that at low concentrations all three photoincorporated into PKCdelta C1A with a stoichiometry of 1:1 in the labeled fraction, but higher stoichiometries occurred at higher concentrations, particularly with azibutanol. Photocomplexes of PKCdelta C1A with azioctanols were separated from the unlabeled protein by HPLC, reduced, alkylated, digested with trypsin, and sequenced by mass spectrometry. All the azioctanols photolabeled PKCdelta C1A at residue Tyr-29, corresponding to Tyr-187 of the full-length PKCdelta, and at a neighboring residue, Lys-40, suggesting there is an alcohol site in this vicinity. In addition, Glu-2 was photolabeled more efficiently by 3-azibutanol than by the azioctanols, suggesting the existence of a second, smaller site.  相似文献   

2.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

3.
I Ueda  A Suzuki 《Biophysical journal》1998,75(2):1052-1057
Firefly luciferase emits a burst of light when mixed with ATP and luciferin (L) in the presence of oxygen. This study compared the effects of long-chain n-alcohols (1-decanol to 1-octadecanol) and fatty acids (decanoic to octadecanoic acids) on firefly luciferase. Fatty acids were stronger inhibitors of firefly luciferase than n-alcohols. Myristyl alcohol inhibited the light intensity by 50% (IC50) at 13.6 microM, whereas the IC50 of myristic acid was 0.68 microM. According to the Meyer-Overton rule, fatty acids are approximately 12,000-fold stronger inhibitors than corresponding alcohols. The Lineweaver-Burk plot showed that myristic acid inhibited firefly luciferase in competition with luciferin, whereas myristyl alcohol inhibited it noncompetitively. The differential scanning calorimetry (DSC) showed that an irreversible thermal transition occurred at approximately 39 degrees C with a transition DeltaHcal of 1.57 cal g-1. The ligand effects on the transition were evaluated by the temperature where the irreversible change is half completed. Alcohols decreased whereas fatty acids increased the thermal transition temperature of firefly luciferase. Koshland's transition-state theory (Science. 1963. 142:1533-1541) states that ligands that bind to the substrate-recognition sites induce the enzyme at a transition state, which is more stabilized than the native state against thermal perturbation. The long-chain fatty acids bound to the luciferin recognition site and stabilized the protein conformation at the transition state, which resisted thermal denaturation. Eyring's unfolding theory (Science. 1966. 154:1609-1613) postulates that anesthetics and alcohols bind nonspecifically to interfacial areas of proteins and reversibly unfold the conformation. The present results showed that alcohols do not compete with luciferin and inhibit firefly luciferase nonspecifically by unfolding the protein. Fatty acids are receptor binders and stabilize the protein conformation at the transition state.  相似文献   

4.
Protein kinase C (PKC) is an important signal transduction protein that has been proposed to interact with general anesthetics at its cysteine-rich diacylglycerol/phorbol ester-binding domain C1, a tandem repeat of C1A and C1B subdomains. To test this hypothesis, we expressed, purified, and characterized the high affinity phorbol-binding subdomain, C1B, of mouse protein kinase Cdelta, and studied its interaction with general anesthetic alcohols. When the fluorescent phorbol ester, sapintoxin-D, bound to PKCdelta C1B in buffer at a molar ratio of 1:2, its fluorescence emission maximum, lambda(max), shifted from 437 to 425 nm. The general anesthetic alcohols, butanol and octanol, further shifted lambda(max) of the PKCdelta C1B-bound sapintoxin-D in a concentration-dependent, saturable manner to approximately 415 nm, suggesting that alcohols interact at a discrete allosteric binding site. To identify this site, PKCdelta C1B was photolabeled with three photo-activable diazirine alcohol analogs, 3-azioctanol, 7-azioctanol, and 3-azibutanol. Mass spectrometry showed photoincorporation of all three alcohols in PKCdelta C1B at a stoichiometry of 1:1 in the labeled fraction. The photolabeled PKCdelta C1B was subjected to tryptic digest, the fragments were separated by online chromatography and sequenced by mass spectrometry. Each azialcohol photoincorporated at Tyr-236. Inspection of the known structure of PKCdelta C1B shows that this residue is situated adjacent to the phorbol ester binding pocket, and within approximately 10 A of the bound phorbol ester. The present results provide direct evidence for an allosteric anesthetic site on protein kinase C.  相似文献   

5.
General anesthetics are a class of drugs whose mode of action is poorly understood. Here, two photoactivable general anesthetics, n-octan-1-ol geometric isomers bearing a diazirine group on either the third or seventh carbon (3- and 7-azioctanol, respectively), were used to locate and delineate an anesthetic site on adenylate kinase. Each photoincorporated at a mole ratio of 1:1 as determined by mass spectrometry. The photolabeled kinase was subjected to tryptic digest, and the fragments were separated by chromatography and sequenced by mass spectrometry. 3-Azioctanol photolabeled His-36, whereas its isomer, 7-azioctanol, photolabeled Asp-41. Inspection of the known structure of adenylate kinase shows that the side chains of these residues are within approximately 5 A of each other. This distance matches the separation of the 3- and 7-positions of an extended aliphatic chain. The alkanol site so-defined spans two domains of adenylate kinase. His-36 is part of the CORE domain, and Asp-41 belongs to the nucleotide monophosphate binding domain. Upon ligand binding the nucleotide monophosphate binding domain rotates relative to the CORE domain, causing a conformational change that might be expected to affect alkanol binding. Indeed, the substrate-mimicking inhibitor adenosine-(5')-pentaphospho-(5')-adenosine (Ap5A) reduced the photoincorporation of 3-[(3)H]azioctanol by 75%.  相似文献   

6.
Forman SA  Zhou QL  Stewart DS 《Biochemistry》2007,46(42):11911-11918
3-Azioctanol is a photoactivatable analogue of octanol that noncompetitively inhibits nicotinic acetylcholine receptors (nAChRs). Photolabeling studies using [3H]-3-azioctanol in Torpedo nAChR identified alphaE262 as a site of desensitization-dependent incorporation. However, it is unknown whether photolabeling of alphaE262 causes functional effects in nAChRs and what other roles this residue plays in gating, desensitization, and channel block. We used ultrafast patch-perfusion electrophysiology and ultraviolet (UV) irradiation to investigate the state-dependence of both reversible nAChR inhibition by 3-azioctanol and the irreversible effects of photoactivated 3-azioctanol. Channels with mutations at alphaE262 were studied to determine ACh EC50s, desensitization rates, and sensitivities to reversible and photoirreversible 3-azioctanol inhibition. Exposure to 3-azioctanol in the presence of 365 nm UV light produced irreversible inhibition of wild-type nAChRs. Desensitization with ACh dramatically increased the degree of irreversible inhibition by photoactivated 3-azioctanol. Mutations at alphaE262 that reduce diazirine photomodification decreased the irreversible inhibition induced by photoactivated 3-azioctanol. Hydrophobic mutations at alphaE262 significantly slowed rapid ACh-induced desensitization and dramatically slowed fast resensitization. In contrast, alphaE262 mutations minimally affected 3-azioctanol channel block, and a half blocking concentration of 3-azioctanol did not alter the rate of ACh-induced fast desensitization. Our results indicate that position alphaE262 on muscle nAChRs contributes to an allosteric modulator site that is strongly coupled to desensitization. Occupation of this pocket by hydrophobic molecules stabilizes a desensitized state by slowing resensitization.  相似文献   

7.
Firefly luciferase is considered a reasonable model of in vivo anesthetic targets despite being destabilized by anesthetics, as reflected by differential scanning calorimetry (DSC). We examined the interaction between two inhaled anesthetics, ATP, luciferase, and temperature, using amide hydrogen exchange, tryptophan fluorescence, and photolabeling in an attempt to examine this apparent discrepancy. In the absence of ATP/Mg2+, halothane and bromoform cause destabilization, as measured by hydrogen exchange, suggesting nonspecific interactions. In the presence of ATP/Mg2+ and at room temperature, the anesthetics produce considerable stabilization with a negative DeltaH, indicating population of a conformer with a specific anesthetic binding site. Stabilizing interactions are lost, however, at unfolding temperatures. We suggest that preferential binding to aggregated forms of luciferase explain the higher temperature destabilization detected with DSC. Our results demonstrate a cooperative binding equilibrium between native ligands and anesthetics, suggesting that similar interactions could underlie actions at biologically relevant targets.  相似文献   

8.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

9.
Enhancement of γ-aminobutyric acid type A receptor (GABAAR)-mediated inhibition is a property of most general anesthetics and a candidate for a molecular mechanism of anesthesia. Intravenous anesthetics, including etomidate, propofol, barbiturates, and neuroactive steroids, as well as volatile anesthetics and long-chain alcohols, all enhance GABAAR function at anesthetic concentrations. The implied existence of a receptor site for anesthetics on the GABAAR protein was supported by identification, using photoaffinity labeling, of a binding site for etomidate within the GABAAR transmembrane domain at the β-α subunit interface; the etomidate analog [3H]azietomidate photolabeled in a pharmacologically specific manner two amino acids, α1Met-236 in the M1 helix and βMet-286 in the M3 helix (Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) J. Neurosci. 26, 11599–11605). Here, we use [3H]azietomidate photolabeling of bovine brain GABAARs to determine whether other structural classes of anesthetics interact with the etomidate binding site. Photolabeling was inhibited by anesthetic concentrations of propofol, barbiturates, and the volatile agent isoflurane, at low millimolar concentrations, but not by octanol or ethanol. Inhibition by barbiturates, which was pharmacologically specific and stereospecific, and by propofol was only partial, consistent with allosteric interactions, whereas isoflurane inhibition was nearly complete, apparently competitive. Protein sequencing showed that propofol inhibited to the same extent the photolabeling of α1Met-236 and βMet-286. These results indicate that several classes of general anesthetics modulate etomidate binding to the GABAAR: isoflurane binds directly to the site with millimolar affinity, whereas propofol and barbiturates inhibit binding but do not bind in a mutually exclusive manner with etomidate.  相似文献   

10.
R Mahmood  M Elzinga  R G Yount 《Biochemistry》1989,28(9):3989-3995
A portion of the active site of rabbit skeletal myosin near the ribose ring of ATP can be labeled by the photoaffinity analogue 3'(2')-O-(4-benzoylbenzoyl)adenosine triphosphate (Bz2ATP). The specificity of the photolabeling was assured by first trapping [14C]Bz2ATP at the active site by use of thiol cross-linking agents [Mahmood, R., Cremo, C., Nakamaye, K., & Yount, R. (1987) J. Biol. Chem. 262, 14479-14486]. Five radioactive peptides were isolated by high-performance liquid chromatography after extensive trypsin and subtilisin digestion of photolabeled myosin subfragment 1. Four of these peptides were sequenced by Edman techniques, and all originated from a region with the sequence Gly-Glu-Ile-Thr-Val-Pro-Ser-Ile-Asp-Asp-Gln, which corresponds to rabbit myosin heavy chain residues 318-328. The fifth labeled peptide had an amino acid composition appropriate for residues 312-328. Amino acid composition, radiochemical analysis, and sequence data indicate that Ser-324 is the major amino acid residue photolabeled by Bz2ATP. Spectrophotometric evidence indicates that the benzophenone carbonyl group has inserted into a C-H bond from either the alpha- or beta-carbon of serine. These results place Ser-324 at a distance of 6-7 A from the 3'(2') ribose oxygens of ATP bound at the active site of myosin.  相似文献   

11.
Ribonucleotide reductase reduces all four ribonucleoside diphosphates to the deoxyribonucleotides required for DNA synthesis. The enzyme is composed of two nonidentical subunits, M1 and M2. The 89-kilodalton M1 subunit contains at least two allosteric sites which, by binding nucleotide effectors, regulate the catalytic activity and substrate specificity of the enzyme. We now show that in addition, protein M1 contains a substrate-binding (catalytic) site which is specifically photolabeled after UV irradiation in the presence of the natural substrate, [32P]CDP. The photolabeling of protein M1 by [32P]CDP required the presence of the second subunit, protein M2, and ATP, the positive allosteric effector for CDP reduction. The negative effectors, dATP, dGTP, and dTTP, inhibited the photolabeling of wild type protein M1. Deoxy-ATP did not inhibit the labeling of a mutant protein M1 that is resistant to feedback inhibition by dATP. In addition, hydroxyurea and 4-methyl-5-aminoisoquinoline thiosemicarbazone, two inhibitors of ribonucleotide reductase which affect protein M2, also inhibited the [32P]CDP labeling of protein M1. These data provide new insights into the role and interaction of the two ribonucleotide reductase subunits, proteins M1 and M2, and the mechanism of action of the allosteric effectors.  相似文献   

12.
Luciferase of the firefly Luciola mingrelica is characterized by fluorescence of not only the unique Trp residue (lambda(em) = 340 nm), but also that of Tyr residues (lambda(em) = 308 nm). Quenching of the intrinsic fluorescence of the luciferase by its substrates luciferin and ATP (AMP) has been studied. Luciferin (LH2) quenches Trp fluorescence more efficiently than the fluorescence of Tyr residues. Two centers of quenching of Tyr fluorescence by ATP have been found corresponding apparently to the allosteric and active sites of the luciferase with K(s(ATP)) = 20 and 110 microM, respectively. The influence of one substrate on the affinity of luciferase to the second was investigated using fluorescence. ATP (AMP) binding to the allosteric sites of the luciferase significantly affects the affinity of luciferase to LH2. Formation of the complex between the luciferase and LH2 affects the affinity of both allosteric and active sites of the luciferase to ATP (AMP). The observed effects are probably connected with conformational changes in the luciferase molecule upon its interaction with the substrates.  相似文献   

13.
Most general anesthetics including long chain aliphatic alcohols act as noncompetitive antagonists of the nicotinic acetylcholine receptor (nAChR). To locate the sites of interaction of a long chain alcohol with the Torpedo nAChR, we have used the photoactivatible alcohol 3-[(3)H]azioctanol, which inhibits the nAChR and photoincorporates into nAChR subunits. At 1 and 275 microm, 3-[(3)H]azioctanol photoincorporated into nAChR subunits with increased incorporation in the alpha-subunit in the desensitized state. The incorporation into the alpha-subunit was mapped to two large proteolytic fragments. One fragment of approximately 20 kDa (alpha V8-20), containing the M1, M2, and M3 transmembrane segments, showed enhanced incorporation in the presence of agonist whereas the other of approximately 10 kDa (alpha V8-10), containing the M4 transmembrane segment, did not show agonist-induced incorporation of label. Within alpha V8-20, the primary site of incorporation was alpha Glu-262 at the C-terminal end of alpha M2, labeled preferentially in the desensitized state. The incorporation at alpha Glu-262 approached saturation between 1 microm, with approximately 6% labeled, and 275 microm, with approximately 30% labeled. Low level incorporation was seen in residues at the agonist binding site and the protein-lipid interface at approximately 1% of the levels in alpha Glu-262. Therefore, the primary binding site of 3-azioctanol is within the ion channel with additional lower affinity interactions within the agonist binding site and at the protein-lipid interface.  相似文献   

14.
Firefly luciferase utilizes only ATP and a few closely related nucleotides as substrates for the formation of luciferyl adenylate which is an intermediate in the bioluminescent reaction sequence that oxidizes firefly luciferin. The enzyme shows two different time courses of light production depending on ATP concentration used: a flash with high concentrations of ATP (>8μM) or a fairly constant production of light with lower concentrations of ATP (< 1 μM). Many nucleotides, nucleotide-containing substances and other compounds, when added either prior to or 1 min after the addition of ATP, change the time course of light production. When added before ATP, these compounds yield a reaction mixture in which light production is fairly constant (at the level characteristic of the flash observed with that ATP concentration). When the compounds are added after ATP addition, light production is markedly stimulated and the higher rate of light production is maintained for several minutes. There is an increase in quanta of light produced per luciferase dimer from 1 to 5/min with the addition of any of several nucleotide analogues. These results are consistent with a stimulated release of the inhibitory product oxyluciferin, allowing turnover of the enzyme. This enzyme turnover permits more light output at high ATP concentrations, thus enhancing the sensitivity of enzyme determination.  相似文献   

15.
While it has been reported that general anaesthetics inhibit the enzyme luciferase and thus reduce the light output of the reaction with luciferin, we find that in squid giant axons injected with luciferin and luciferase, treatment with experimental general anaesthetics at concentrations sufficient to block axonal conduction leads to an increase in the light production by the reaction. This potentiation of the protein activity is best observed when luciferin concentration is above the apparent association constant. Our findings raise doubts regarding the suitability of luciferase as a model for the target region of general anesthetic action.  相似文献   

16.
The recB and recD subunits of the recBCD enzyme (exonuclease V) from Escherichia coli were covalently photolabeled with the ATP photoaffinity analogue [alpha-32P]8-azido-ATP. The labeling was specific for ATP binding sites by the following criteria. Saturation occurs at high 8-azido-ATP concentrations with dissociation constants of 30 and 120 microM for the recD and recB subunits, respectively; ATP strongly inhibits the photolabeling; 8-azido-ATP is hydrolyzed by the recBCD enzyme and supports its double-stranded DNA exonuclease activity; and the label is largely confined to two peptides obtained by tryptic digestion of the photolabeled holoenzyme; one is derived from the recB subunit and the other from the recD subunit.  相似文献   

17.
Horseradish peroxidase (HRP) catalyzes the oxidative chemiluminescent reaction of luminol, and firefly luciferase catalyzes the oxidation of firefly D-luciferin. Here we report a novel substrate, 5-(5'-azoluciferinyl)-2,3-dihydro-1,4-phthalazinedione (ALPDO), that can trigger the activity of HRP and firefly luciferase in solution because it contains both luminol and luciferin functionalities. It is synthesized by diazotization of luminol and its subsequent azo coupling with firefly luciferin. NMR spectral data show that the C5' of benzothiazole in luciferin connects the diazophthalahydrazide. The electronic absorption and fluorescence properties of ALPDO are different from those of its precursor molecules. The chemiluminescence emission spectra of the conjugate substrate display biphotonic emission characteristic of azophthalatedianion and oxyluciferin. It has an optimum pH of 8.0 for maximum activity with respect to HRP as well as luciferase. At pH 8.0 the bifunctional substrate has 12 times the activity of luminol but has 7 times less activity than the firefly luciferin-luciferase system. The specific enhancement of light emission from the cyclic hydrazide part of ALPDO helped in the sensitive assay of HRP down to 2.0 x 10(-13) M and of ATP to 1.0 x 10(-14) mol. Addition of enhancers such as firefly luciferin and p-iodophenol (PIP) to the HRP-ALPDO-H2O2 system enhanced the light output.  相似文献   

18.
Etomidate, one of the most potent general anesthetics used clinically, acts at micromolar concentrations as an anesthetic and positive allosteric modulator of gamma-aminobutyric acid responses, whereas it inhibits muscle-type nicotinic acetylcholine receptors (nAChRs) at concentrations above 10 microm. We report here that TDBzl-etomidate, a photoreactive etomidate analog, acts as a positive allosteric nAChR modulator rather than an inhibitor, and we identify its binding sites by photoaffinity labeling. TDBzl-etomidate (>10 microm) increased the submaximal response to acetylcholine (10 microm) with a 2.5-fold increase at 60 microm. At higher concentrations, it inhibited the binding of the noncompetitive antagonists [(3)H]tetracaine and [(3)H]phencyclidine to Torpedo nAChR-rich membranes (IC(50) values of 0. 8 mm). nAChR-rich membranes were photolabeled with [(3)H]TDBzl-etomidate, and labeled amino acids were identified by Edman degradation. For nAChRs photolabeled in the absence of agonist (resting state), there was tetracaine-inhibitable photolabeling of amino acids in the ion channel at positions M2-9 (deltaLeu-265) and M2-13 (alphaVal-255 and deltaVal-269), whereas labeling of alphaM2-10 (alphaSer-252) was not inhibited by tetracaine but was enhanced 10-fold by proadifen or phencyclidine. In addition, there was labeling in gammaM3 (gammaMet-299), a residue that contributes to the same pocket in the nAChR structure as alphaM2-10. The pharmacological specificity of labeling of residues, together with their locations in the nAChR structure, indicate that TDBzl-etomidate binds at two distinct sites: one within the lumen of the ion channel (labeling of M2-9 and -13), an inhibitory site, and another at the interface between the alpha and gamma subunits (labeling of alphaM2-10 and gammaMet-299) likely to be a site for positive allosteric modulation.  相似文献   

19.
Methylenetetrahydrofolate reductase commits tetrahydrofolate-bound one carbon units to use in the regeneration of the methyl group of adenosylmethionine (AdoMet) in eucaryotes and its activity is allosterically inhibited by AdoMet. Limited proteolysis and scanning transmission electron microscopy have been employed to show that the enzyme is a dimer of identical subunits and that each subunit is composed of spatially distinct domains with molecular masses of approximately 40 and 37 kDa (Matthews, R. G., Vanoni, M. A., Hainfeld, J. F., and Wall, J. (1984) J. Biol. Chem. 259, 11647-11650). We now report the use of the photoaffinity label 8-azido-S-adenosylmethionine (8-N3AdoMet) to locate the binding site for the allosteric inhibitor on the 37-kDa domain. In the absence of light, 8-N3AdoMet is itself an inhibitor of methylenetetrahydrofolate reductase activity, with a Ki value 4.8-fold higher than AdoMet, and like AdoMet it induces slow transitions between active and inactive forms. Photoaffinity labeling is dependent on irradiation with ultraviolet light and is prevented by AdoMet but not by ATP. Limited proteolysis of the photolabeled enzyme results in the formation of a labeled 37-kDa fragment which is further processed to a labeled 34-kDa fragment. On conversion of the 34-kDa fragment to a 31-kDa polypeptide, all label is lost, suggesting that the labeling is restricted to an approximately 3-kDa region near one end of the 37-kDa polypeptide. Limited proteolysis of the native enzyme, while completely desensitizing the enzyme to inhibition by AdoMet or 8-N3AdoMet, does not prevent subsequent photolabeling of the 37-kDa peptide fragment. This photolabeling does not occur in the presence of excess AdoMet. These latter experiments suggest that the desensitization of the enzyme eliminates the ability of allosteric effectors to stabilize an inactive form of the enzyme, but does not abolish specific binding of 8-N3AdoMet or AdoMet.  相似文献   

20.
Aspartate transcarbamoylase from Escherichia coli shows homotropic cooperativity for aspartate as well as heterotropic regulation by nucleotides. Structurally, it consists of two trimeric catalytic subunits and three dimeric regulatory subunits, each chain being comprised of two domains. Glu-50 and Ser-171 are involved in stabilizing the closed conformation of the catalytic chain. Replacement of Glu-50 or Ser-171 by Ala in the holoenzyme has been shown previously to result in marked decreases in the maximal observed specific activity, homotropic cooperativity, and affinity for aspartate (Dembowski NJ, Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:3716-3723; Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). We have constructed a double mutant enzyme combining both mutations. The resulting Glu-50/ser-171-->Ala enzyme is 9-fold less active than the Ser-171-->Ala enzyme, 69-fold less active than the Glu-50-->Ala enzyme, and shows 1.3-fold and 1.6-fold increases in the [S]0.5Asp as compared to the Ser-171-->Ala and Glu-50-->Ala enzymes, respectively. However, the double mutant enzyme exhibits some enhancement of homotropic cooperativity with respect to aspartate, relative to the single mutant enzymes. At subsaturating concentrations of aspartate, the Glu-50/Ser-171 -->Ala enzyme is activated less by ATP than either the Glu-50-->Ala or Ser-171-->Ala enzyme, whereas CTP inhibition is intermediate between that of the two single mutants. As opposed to the wild-type enzyme, the Glu-50/Ser-171 -->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes by solution X-ray scattering indicates that both mutants exist in the same T quaternary structure as the wild-type enzyme in the absence of ligands, and in the same R quaternary structure in the presence of saturating N-(phosphonoacetyl)-L-aspartate. However, saturating concentrations of carbamoyl phosphate and succinate are unable to convert a significant fraction of either mutant enzyme population to the R quaternary structure, as has been observed previously for the Glu-50-->Ala enzyme. The curves for both the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes obtained in the presence of substoichiometric amounts of PALA are linear combinations of the two extreme T and R states. The structural consequences of nucleotide binding to these two enzymes were also investigated. Most surprisingly, the direction and amplitude of the effect of ATP upon the double mutant enzyme were shown to vary depending upon the substrate analogue used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号