首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jung JH  An K  Kwon OB  Kim HS  Kim JH 《Molecules and cells》2011,32(2):197-201
Various animal models of Alzheimer disease (AD) are characterized by deficits in spatial memory that are causally related to altered synaptic function and impairment of long-term potentiation (LTP) in the hippocampus. In Tg2576 AD mice, we compared LTP in 2 major hippocampal pathways, Schaffer collateral (SC) and mossy fiber (MF) pathways. Whereas LTP was completely abolished in the SC pathway of Tg2576 mice, we found no decrease in LTP induced by stimulation of the MF pathway. In fact, we found that in the MF pathway, LTP was slightly, but significantly, enhanced compared with that in the MF pathway of WT littermates. This pathway-specific impairment of LTP is not attributable to alterations in transmitter release, as indicated by an unaltered paired-pulse ratio. These results suggest that the spatial memory deficits normally seen in AD models arise primarily from LTP impairment at the SC pathway.  相似文献   

2.
The cholesteryl ester transfer protein (CETP) gene plays an essential role in regulating cholesterol homeostasis and is a candidate susceptibility gene for late-onset Alzheimer's disease (AD). Recent finding suggests that the CETP I405V polymorphism (rs5882) is associated with a slower rate of memory decline and a lower risk of incident dementia. Using data from two ongoing epidemiologic clinical-pathologic cohort studies of aging and dementia in the United States, the Religious Order Study and the Memory and Aging Project, we evaluated the association of the CETP I405V polymorphism (rs5882) with cognitive decline and risk of incident AD in more than 1300 participants of European ancestry. Our results suggest that the CETP I405V polymorphism was associated with a faster rather than a slower rate of decline in cognition over time, and an increased risk of incident AD. This finding is consistent with data showing that the CETP I405V is associated with increased neuritic plaque density at autopsy.  相似文献   

3.
4.
5.
Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer's disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.  相似文献   

6.
doi: 10.1111/j.1741‐2358.2011.00560.x
Indicators for root caries in Danish persons with recently diagnosed Alzheimer’s disease Objective: To identify indicators of root caries among persons with newly diagnosed Alzheimer’s disease (AD). Background: Few studies have investigated dental caries in older adults with AD. Previously we found that persons with AD had significantly more root caries compared to persons with dementia other than AD. Methods: Participants were recruited from two university hospital clinics in Copenhagen, Denmark. A team of neurologists/geriatricians carried out the diagnostic screening. The study included an interview, oral examination and medical records. Results: We evaluated potential indicators of root decay across subjects with 3+ decayed surfaces vs. <3 decayed surfaces. Variables associated with increased odds of root caries were age over 80 years, 2+ decayed coronal surfaces and 5+ filled root surfaces. Among the social variables, living with someone was associated with a nearly 70% reduction in the odds of having 3+ surfaces of untreated caries. Discussion: Root caries is highly prevalent among individuals with new AD and there is still a strong need for active assessment of and attention to oral problems in persons with AD. Our findings document that recently diagnosed AD cases with multiple coronal caries lesions are at elevated risk of having more root caries. Also persons 81+ years and those with multiple root fillings are more likely to have numerous untreated root lesions.  相似文献   

7.
Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by genetic and non-genetic factors. Most AD cases may be triggered and promoted by non-genetic environmental factors. Clinical studies have reported that patients with AD show enhanced baseline levels of stress hormones in the blood, but their physiological significance with respect to the pathophysiology of AD is not clearly understood. Here we report that AD mouse models exposed to restraints for 2 h daily on 16 consecutive days show increased levels of β-amyloid (Aβ) plaque deposition and commensurable enhancements in Aβ(1–42), tau hyperphosphorylation, and neuritic atrophy of cortical neurons. Repeated restraints in Tg2576 mice markedly increased metabolic oxidative stress and down-regulated the expression of MMP-2, a potent Aβ-degrading enzyme, in the brain. These stress effects were reversed by blocking the activation of the hypothalamus-pituitary-adrenal gland axis with the corticotropin-releasing factor receptor antagonist NBI 27914, further suggesting that over-activation of the hypothalamic-pituitary-adrenal axis is required for stress-enhanced AD-like pathogenesis. Consistent with these findings, corticosteroid treatments to cultured primary cortical neurons increased metabolic oxidative stress and down-regulated MMP-2 expression, and MMP-2 down-regulation was reversed by inhibition of oxidative stress. These results suggest that behavioral stress aggravates AD pathology via generation of metabolic oxidative stress and MMP-2 down-regulation.  相似文献   

8.
In addition to progressive dementia, Alzheimer's disease (AD) is characterized by increased incidence of seizure activity. Although originally discounted as a secondary process occurring as a result of neurodegeneration, more recent data suggest that alterations in excitatory-inhibitory (E/I) balance occur in AD and may be a primary mechanism contributing AD cognitive decline. In this study, we discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD. Stressing the importance of understanding the subunit composition of individual GABA(A) receptors, investigations demonstrate alterations of particular GABA(A) receptor subunits in AD, but overall sparing of the GABAergic system. In this study, we review experimental data on the GABAergic system in the pathobiology of AD and discuss relevant therapeutic implications. When developing AD therapeutics that modulate GABA it is important to consider how E/I balance impacts AD pathogenesis and the relationship between seizure activity and cognitive decline.  相似文献   

9.
Recent studies indicate that the Tg2576 transgenic mouse model of Alzheimer's disease [tg(hAPP)] demonstrates disturbances in plasma glucose and neuroendocrine function reminiscent of Alzheimer's disease (AD). Alterations in any one of these systems can have a profound effect on hepatic cytochrome P450 (CYP) expression. Additionally, the recent discovery that amyloid beta 1-42 can induce the expression of CYP reductase in neuronal cultures further suggests that hepatic CYP-related metabolism may be affected by the expression of mutant human amyloid precursor protein in these tg(hAPP) mice. Therefore, the current study was conducted to investigate the activity and protein content of several CYP isoforms in the livers and kidneys of aged (20-month-old) tg(hAPP) mice. tg(hAPP) mice exhibit significant elevations in hepatic CYP2B, CYP2E1-, CYP3A- and CYP4A-associated activities and CYP4A immunoreactive protein compared with wild-type. In contrast to the liver, a significant depression in renal CYP2E1- and CYP4A-associated activities were demonstrated in tg(hAPP) mice. The presence of the mutant hAPP protein was detected in the brain, kidney and livers of tg(hAPP) mice.  相似文献   

10.
Using antiserum against the recombinant isoform 3 of mouse brain metallothionein (MT3), the amount of MT3 protein was determined in whole brain homogenates from the Tg2576 transgenic mouse model of Alzheimer's Disease. Twenty-two month old transgenic positive mice showed a 27% decrease of MT3 normalized to the total protein in the extracts compared to same age, control transgenic negative mice. Metallothioneins bind seven molar equivalents of divalent metal ions per mole of protein so metal levels also were measured in these whole brain extracts using inductively coupled plasma atomic absorption (ICP-AA) spectrometry. No significant difference was observed for any metal assayed. Because neuronal nitric oxide synthase (nNOS) is involved in neurodegenerative disease and nitric oxide specifically interacts with MT3, the concentration and total nNOS activity also were evaluated. The transgenic positive mice showed a decrease of 28% in nNOS protein compared to the same age transgenic negative mice. Normalized to the amount of nNOS protein, total NOS activity was higher in the transgenic positive mice. These data showed that protein levels of both MT3 and nNOS were reduced in transgenic positive mice that show many characteristics of Alzheimer's Disease. In vitro studies suggested that MT3 was not a likely candidate for directly affecting nNOS activity in the brain.  相似文献   

11.
12.
Nucleic acid oxidation: an early feature of Alzheimer's disease   总被引:1,自引:0,他引:1  
Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age‐matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late‐stage AD, and non‐AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general.

  相似文献   


13.
Amyloid-beta (Aβ) plaques are a hallmark of Alzheimer's disease. Several proteases including plasmin are thought to promote proteolytic cleavage and clearance of Aβ from brain. The activity of both plasmin and tissue plasminogen activator are reduced in Alzheimer's disease brain, while the tissue plasminogen activator inhibitor neuroserpin is up-regulated. Here, the relationship of tissue plasminogen activator and neuroserpin to Aβ levels is explored in mouse models. Aβ(1-42) peptide injected into the frontal cortex of tissue plasminogen activator knockout mice is slow to disappear compared to wildtype mice, whereas neuroserpin knockout mice show a rapid clearance of Aβ(1-42). The relationship of neuroserpin and tissue plasminogen activator to Aβ plaque formation was studied further by knocking-out neuroserpin in the human amyloid precursor protein-J20 transgenic mouse. Compared to the J20-transgenic mouse, the neuroserpin-deficient J20-transgenic mice have a dramatic reduction of Aβ peptides, fewer and smaller plaques, and more active tissue plasminogen activator associated with plaques. Furthermore, neuroserpin-deficient J20-transgenic mice have near normal performances in the Morris water maze, in contrast to the spatial memory defects seen in J20-transgenic mice. These results support the concept that neuroserpin inhibition of tissue plasminogen activator plays an important role both in the accumulation of brain amyloid plaques and loss of cognitive abilities.  相似文献   

14.
《Free radical research》2013,47(12):1490-1495
Efficient function of the mitochondrial respiratory chain and the citric acid cycle (CAC) enzymes is required for the maintenance of human brain function. A conception of oxidative stress (OxS) was recently advanced as a disruption of redox signalling and control. Mitochondrial OxS (MOxS) is implicated in the development of Alzheimer's disease (AD). Thus, both pro- and anti-oxidants of the human body and MOxS target primarily the redox-regulated CAC enzymes, like mitochondrial aconitase (MAc). We investigated the specific activity of the MAc and MOxS index (MOSI) in an age-matched control (Co), AD and Swedish Familial AD (SFAD) post-mortem autopsies collected from frontal cortex (FC) and occipital primary cortex (OC) regions of the brain. We also examined whether the mitochondrial neuroprotective signalling molecules glutathione, melatonin and 17-β-estradiol (17βE) and mitochondrially active pro-oxidant neurotoxic amyloid-β peptide can modulate the activity of the MAc isolated from FC and OC regions similarly or differently in the case of Co, AD and SFAD. The activity of redox-sensitive MAc may directly depend on the mitochondrial oxidant/antioxidant balance in age-matched Co, AD and SFAD brain regions.  相似文献   

15.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

16.
Amyloid-β (Aβ) is cleaved from amyloid precursor protein (APP) predominantly after APP has trafficked through the secretory pathway and then become re-internalised by endocytosis. Clathrin-mediated and, more recently, clathrin-independent endocytosis have both been implicated in this process. Furthermore, endocytic abnormalities have been identified in cases of Alzheimer’s disease (AD), however, the relevance of these changes to the aetiology of the disease remains unclear. We therefore examined the expression of proteins related to these endocytic processes in the cortex of Tg2576 mice that overexpress the Swedish mutation in APP, and consequently overexpress Aβ, to determine if there were any changes in their associated pathways. We identified significant increases in the levels of clathrin, dynamin and PICALM, all proteins intimately involved with the clathrin-mediated endocytic pathway, in the transgenic animals. However, levels of proteins associated with flotillin or caveolin-mediated endocytic pathways remained unchanged. These results emphasise the importance of clathrin-mediated endocytosis in the aetiology of AD and reinforce the results of the recent GWAS studies that identified genes for clathrin-mediated endocytosis as susceptibility genes for AD. Such studies in transgenic mice will allow us to learn more about the role of clathrin-mediated endocytosis in AD.  相似文献   

17.
Alzheimer's disease (AD) is characterized by severe neuronal loss as well as the accumulation of amyloid‐β (Aβ), which ultimately leads to plaque formation. Although there is now a general agreement that the aggregation of Aβ can be initiated by prion‐like seeding, the impact and functional consequences of induced Aβ deposits (Aβ seeding) on neurons still remain open questions. Here, we find that Aβ seeding, representing early stages of plaque formation, leads to a dramatic decrease in proliferation and neurogenesis in two APP transgenic mouse models. We further demonstrate that neuronal cell death occurs primarily in the vicinity of induced Aβ deposits culminating in electrophysiological abnormalities. Notably, environmental enrichment and voluntary exercise not only revives adult neurogenesis and reverses memory deficits but, most importantly, prevents Aβ seeding by activated, phagocytic microglia cells. Our work expands the current knowledge regarding Aβ seeding and the consequences thereof and attributes microglia an important role in diminishing Aβ seeding by environmental enrichment.  相似文献   

18.
Yuyama K  Yamamoto N  Yanagisawa K 《FEBS letters》2006,580(30):6972-6976
Endocytic pathway abnormalities were previously observed in brains affected with Alzheimer’s disease (AD). To clarify the pathological relevance of these abnormalities to assembly of amyloid β-protein (Aβ), we treated PC12 cells with chloroquine, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment induced accumulation of GM1 ganglioside (GM1) in Rab5-positive enlarged early endosomes and on the cell surface. Notably, an increase in GM1 level on the cell surface was sufficient to induce Aβ assembly. Our results suggest that endocytic pathway abnormalities in AD brain induce GM1 accumulation on the cell surface, leading to amyloid fibril formation in brain.  相似文献   

19.
Banks WA  Terrell B  Farr SA  Robinson SM  Nonaka N  Morley JE 《Peptides》2002,23(12):2223-2226
Vaccinations against amyloid β protein (AβP) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer’s disease. This has raised the question of whether circulating antibodies, normally restricted by the blood–brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369–372]. Here, we show that antibody directed against AβP does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1 h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing AβP. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer’s and other diseases of the brain.  相似文献   

20.
In Alzheimer’s disease (AD), the neuropathologic hallmarks of β-amyloid deposition and neurofibrillary degeneration are associated with early and progressive pathology of the endosomal–lysosomal system. Abnormalities of autophagy, a major pathway to lysosomes for protein and organelle turnover, include marked accumulations of autophagy-related vesicular compartments (autophagic vacuoles or AVs) in affected neurons. Here, we investigated the possibility that AVs contain the proteases and substrates necessary to cleave the amyloid precursor protein (APP) to Aβ peptide that forms β-amyloid, a key pathogenic factor in AD. AVs were highly purified using a well-established metrizamide gradient procedure from livers of transgenic YAC mice overexpressing wild-type human APP. By Western blot analysis, AVs contained APP, βCTF - the β-cleaved carboxyl-terminal domain of APP, and BACE, the protease-mediating β-cleavage of APP. β-Secretase activity measured against a fluorogenic peptide was significantly enriched in the AV fraction relative to whole-liver lysate. Compared to other recovered subcellular fractions, AVs exhibited the highest specific activity of γ-secretase based on a fluorogenic assay and inhibition by a specific inhibitor of γ-secretase, DAPT. AVs were also the most enriched subcellular fraction in levels of the γ-secretase components presenilin and nicastrin. Immunoelectron microscopy demonstrated selective immunogold labeling of AVs with antibodies specific for the carboxyl termini of human Aβ40 and Aβ42. These data indicate that AVs are a previously unrecognized and potentially highly active compartment for Aβ generation and suggest that the abnormal accumulation of AVs in affected neurons of the AD brain contributes to β-amyloid deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号