首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs). Bony fishes exposed to PHAHs exhibit a wide range of developmental defects. However, functional roles of fish AHR are not yet fully understood, compared with those of mammalian AHRs. To investigate the potential sensitivity to PHAHs toxic effects, an AHR cDNA was initially cloned and sequenced from red seabream (Pagrus major), an important fishery resource in Japan. The present study succeeded in identifying two highly divergent red seabream AHR cDNA clones, which shared only 32% identity in full-length amino acid sequence. The phylogenetic analysis revealed that one belonged to AHR1 clade (rsAHR1) and another to AHR2 clade (rsAHR2). The rsAHR1 encoded a 846-residue protein with a predicted molecular mass of 93.2 kDa, and 990 amino acids and 108.9 kDa encoded rsAHR2. In the N-terminal half, both rsAHR genes included bHLH and PAS domains, which participate in ligand binding, AHR/ARNT dimerization and DNA binding. The C-terminal half, which is responsible for transactivation, was poorly conserved between rsAHRs. Quantitative analyses of both rsAHRs mRNAs revealed that their tissue expression profiles were isoform-specific; rsAHR1 mRNA expressed primarily in brain, heart, ovary and spleen, while rsAHR2 mRNA was observed in all tissues examined, indicating distinct roles of each rsAHR. Furthermore, there appeared to be species-differences in the tissue expression profiles of AHR isoforms between red seabream and other fish. These results suggest that there are isoform- and species-specific functions in piscine AHRs.  相似文献   

2.
3.
4.
We induced and characterized a recessive lethal mutation, nic-1, in zebrafish that blocks the function of muscle acetylcholine (ACh) receptors. Homozygous nic-1 embryos are nonmotile and fail to respond to exogenous application of cholinergic agonists, although their muscles contract in response to direct electrical stimulation. Moreover, we do not detect cell surface labeling by alpha-bungarotoxin or monoclonal antibodies that recognize the other three subunits of ACh receptors. Motoneurons, however, establish morphologically normal patterns of innervation and normal neuromuscular junctions. We suggest that neither transmitter-mediated nerve signaling nor any other aspect of ACh receptor function is required for the formation of appropriate nerve connections in this system.  相似文献   

5.
6.
7.
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.  相似文献   

8.
9.
10.
11.
Aryl hydrocarbon receptors: diversity and evolution   总被引:3,自引:0,他引:3  
Animals have evolved inducible enzymatic defenses to facilitate the biotransformation and elimination of toxic compounds encountered in the environment. The sensory component of this system consists of soluble receptors that regulate the expression of certain isoforms of cytochrome P450, other enzymes, and transporters in response to environmental chemicals. These receptors include several members of the steroid/nuclear receptor superfamily as well as the aryl hydrocarbon receptor (AHR), a member of the bHLH-PAS gene superfamily. In addition to its adaptive functions, the AHR serves poorly understood physiological roles; interference with those roles by dioxins and related chemicals causes toxicity. One approach to understanding the physiological significance of the AHR is to characterize its structure, function, and regulation in diverse species, including mammals, birds, fish, and invertebrates. These animal groups include model species with unique features that can be exploited to broaden our understanding of AHR function. Studies carried out in diverse species also provide phylogenetic information that allows inferences about the evolutionary history of the AHR. This review summarizes the current understanding of AHR diversity among animal species and the evolution of the AHR signaling pathway, as inferred from molecular studies in vertebrate and invertebrate animals. The AHR gene has undergone duplication and diversification in vertebrate animals, resulting in at least three members of an AHR gene family: AHR1, AHR2, and AHR repressor. The inability of invertebrate AHR homologs to bind dioxins and related chemicals, along with other evidence, suggests that the adaptive role of the AHR as a regulator of xenobiotic metabolizing enzymes may have been a vertebrate innovation. The physiological functions of the AHR during development appear to be ancestral to the adaptive functions. Sensitivity to the developmental toxicity of dioxins and related chemicals may have had its origin in the evolution of dioxin-binding capacity of the AHR in the vertebrate lineage.  相似文献   

12.
13.
14.
Dioxins are persistent and ubiquitous environmental poisons that become enriched in the food chain. Besides being acutely lethal, the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to many animal species. We have previously found that developing teeth of children may be sensitive to environmental dioxins via their mother's milk and that rat and mouse teeth are dioxin-sensitive throughout their development. The aryl hydrocarbon receptor (AHR) together with the AHR nuclear translocator (ARNT) protein is believed to mediate the toxic effects of dioxins. To study the potential involvement of the AHR-ARNT pathway in the dental toxicity of TCDD, we analysed the expression of AHR and ARNT by in situ hybridization and immunohistochemistry in developing mouse teeth. AHR mRNA first appeared in the epithelium of E12 first molar tooth buds and both proteins were weakly expressed in the bud. After cytodifferentiation the expression was up regulated and became intense in secretory odontoblasts and ameloblasts. The coexpression of AHR and ARNT during early tooth development as well as during the information and mineralization of the dental matrices is suggestive of the AHR-ARNT pathway as a mediator of dental toxicity of TCDD.  相似文献   

15.
The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic receptors in living organisms and is responsible for interacting with several drugs and environmental toxins, most notably tetrachlorodibenzodioxin (TCDD). Binding of diverse agonists to AHR initiates an extensive set of downstream gene expression responses and thus identifies AHR among a key set of proteins responsible for mediating interactions between living organisms and foreign molecules. While extensive biochemical investigations on the interaction of AHR with ligands have been carried out, studies comparing the abilities of specific computational algorithms in explaining the potency of known AHR ligands are lacking. In this study we use molecular dynamics simulations to identify a physically realistic conformation of the AHR that is relevant to ligand binding. We then use two sets of existing data on known AHR ligands to evaluate the performance of several docking and scoring protocols in rationalizing the potencies of these ligands. The results identify an optimum set of protocols that could prove useful in future AHR ligand discovery and design as a target or anti-target. Exploration of the details of these protocols sheds light on factors operating in modeling AHR ligand binding.  相似文献   

16.
A new series of 1,3-diketone, heterocyclic and α,β-unsaturated derivatives were synthesized and evaluated for their AhR antagonist activity using zebrafish and mammalian cells. Compounds 1b, 2c, 3b and 5b showed significant AhR antagonist activity in a transgenic zebrafish model. Among them, compound 3b, and 5b were found to have excellent AhR antagonist activity with IC50 of 3.36 nM and 8.3 nM in a luciferase reporter gene assay. In stem cell proliferation assay, compound 5b elicited marked HSC expansion.  相似文献   

17.
Blood vessels form either by the assembly and differentiation of mesodermal precursor cells (vasculogenesis) or by sprouting from preexisting vessels (angiogenesis). Endothelial-specific receptor tyrosine kinases and their ligands are known to be essential for these processes. Targeted disruption of vascular endothelial growth factor (VEGF) or its receptor kdr (flk1, VEGFR2) in mouse embryos results in a severe reduction of all blood vessels, while the complete loss of flt1 (VEGFR1) leads to an increased number of hemangioblasts and a disorganized vasculature. In a large-scale forward genetic screen, we identified two allelic zebrafish mutants in which the sprouting of blood vessels is specifically disrupted without affecting the assembly and differentiation of angioblasts. Molecular cloning revealed nonsense mutations in flk1. Analysis of mRNA expression in flk1 mutant embryos showed that flk1 expression was severely downregulated, while the expression of other genes (scl, gata1, and fli1) involved in vasculogenesis or hematopoiesis was unchanged. Overexpression of vegf(121+165) led to the formation of additional vessels only in sibling larvae, not in flk1 mutants. We demonstrate that flk1 is not required for proper vasculogenesis and hematopoiesis in zebrafish embryos. However, the disruption of flk1 impairs the formation or function of vessels generated by sprouting angiogenesis.  相似文献   

18.
In order to further establish zebrafish as a vertebrate model for studying the mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity it is necessary to characterize the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AhR/ARNT) signaling pathways in this species. In this study, three zfARNT2 cDNAs were isolated, expressed, and characterized and named zfARNT2b, zfARNT2c, and zfARNT2a. zfARNT2b, zfARNT2c, and zfARNT2a encode proteins with theoretical molecular weights of 81, 79, and 45 kDa, respectively. zfARNT2b and zfARNT2a proteins are identical over the first 403 amino acids but differ in their C-terminal domains as a result of alternative mRNA splicing. zfARNT2c is nearly identical to zfARNT2b, with the exception of an in frame 15 amino acid deletion adjacent to the basic region of zfARNT2c. Using quantitative RT-PCR methods the tissue distribution of each zfARNT2 isoform was determined. In COS-7 cells expressing zfARNT2b and zfAhR2, 10 nM TCDD causes a nine-fold induction of a dioxin responsive reporter gene. In COS-7 cells expressing zfARNT2a or zfARNT2c, TCDD does not induce reporter gene expression. In contrast, all three zfARNT2 proteins induce reporter gene activity under control of hypoxia responsive elements when cotransfected with the zebrafish endothelial specific PAS protein 1. DNA gel shift analysis suggests that the decreased function of zfARNT2a is due to inefficient binding of zfARNT2a/zfAhR2 complexes to dioxin responsive elements. These results also indicate that alternative mRNA splicing results in formation of ARNT proteins with distinct functional properties.  相似文献   

19.
20.
Zebrafish embryos demonstrate robust swimming behavior, which consists of smooth, alternating body bends. In contrast, several motility mutants have been identified that perform sustained, bilateral trunk muscle contractions which result in abnormal body shortening. Unlike most of these mutants, accordion (acc)dta5 demonstrates a semidominant effect: Heterozygotes exhibit a distinct but less severe phenotype than homozygotes. Using molecular‐genetic mapping and candidate gene analysis, we determined that accdta5 mutants harbor a novel mutation in atp2a1, which encodes SERCA1, a calcium pump important for muscle relaxation. Previous studies have shown that eight other acc alleles compromise SERCA1 function, but these alleles were all reported to be recessive. Quantitative behavioral assays, complementation testing, and analysis of molecular models all indicate that the accdta5 mutation diminishes SERCA1 function to a greater degree than other acc alleles through either haploinsufficient or dominant‐negative molecular mechanisms. Since mutation of human ATP2A1 results in Brody disease, an exercise‐induced impairment of muscle relaxation, accdta5 mutants may provide a particularly sensitive model of this disorder. genesis, 48:354–361, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号