共查询到20条相似文献,搜索用时 0 毫秒
1.
Although most hypotheses to explain the emergence of the eukaryotic lineage are conflicting, some consensus exists concerning the requirement of a genomic fusion between archaeal and bacterial components. Recent phylogenomic studies have provided support for eocyte-like scenarios in which the alleged 'archaeal parent' of the eukaryotic cell emerged from the Crenarchaeota/Thaumarchaeota. Here, we provide evidence for a scenario in which this archaeal parent emerged from within the 'TACK' superphylum that comprises the Thaumarchaeota, Crenarchaeota and Korarchaeota, as well as the recently proposed phylum 'Aigarchaeota'. In support of this view, functional and comparative genomics studies have unearthed an increasing number of features that are uniquely shared by the TACK superphylum and eukaryotes, including proteins involved in cytokinesis, membrane remodeling, cell shape determination and protein recycling. 相似文献
2.
Syvanen M 《Journal of molecular evolution》2002,55(1):85-91
A novel procedure for testing the relative rates of evolution is described. The procedure, the distance-matrix rate test, consists of creating a graph that displays two complete distance matrices for two different genes derived from the same group of species, an approach made practical by numerous whole genomic sequences. The results in this paper show that the molecular clock of ribosomal RNA from Eukaryotes is uniquely accelerated and highly variable while those of Archaea and Bacteria are not. This idiosyncratic eukaryotic rRNA evolution is not observed with four different protein genes. The distance matrix rate test consists of plotting the distance of one gene (from two different species) against the distance of a second gene (from the same pair of species) in the form of a simple X-Y plot. Because it is not possible to compute variances (or co-variances in this case) that can be meaningfully compared to expectations from a Poisson process, the test does not permit calculations of an index of dispersion. In place of this, equations are given for the 95% confidence limits expected for a Poisson process. The test was applied to the proteins rpsl1 and rp114, as one example, and to rps11 and ssu rRNA as a second example. In addition, the cytochrome c and cytochrome c oxidase evolution from a larger group of Eukaryotes are compared to each other and that of the ssu rRNA. This graphical test shows that the evolution of the four proteins and the archael and bacterial ssu rRNA's are consistent with a Poisson process since last common ancestor. The distance-matrix rate test that is introduced in this study needs to make no assumptions regarding evolutionary rates, divergence times, or phylogenetic relationships. 相似文献
3.
Potential new antibiotic sites in the ribosome revealed by deleterious mutations in RNA of the large ribosomal subunit 总被引:2,自引:0,他引:2
The ribosome is the main target for antibiotics that inhibit protein biosynthesis. Despite the chemical diversity of the known antibiotics that affect functions of the large ribosomal subunit, these drugs act on only a few sites corresponding to some of the known functional centers. We have used a genetic approach for identifying structurally and functionally critical sites in the ribosome that can be used as new antibiotic targets. By using randomly mutagenized rRNA genes, we mapped rRNA sites where nucleotide alterations impair the ribosome function or assembly and lead to a deleterious phenotype. A total of 77 single-point deleterious mutations were mapped in 23 S rRNA and ranked according to the severity of their deleterious phenotypes. Many of the mutations mapped to familiar functional sites that are targeted by known antibiotics. However, a number of mutations were located in previously unexplored regions. The distribution of the mutations in the spatial structure of the ribosome showed a strong bias, with the strongly deleterious mutations being mainly localized at the interface of the large subunit and the mild ones on the solvent side. Five sites where deleterious mutations tend to cluster within discrete rRNA elements were identified as potential new antibiotic targets. One of the sites, the conserved segment of helix 38, was studied in more detail. Although the ability of the mutant 50 S subunits to associate with 30 S subunits was impaired, the lethal effect of mutations in this rRNA element was unrelated to its function as an intersubunit bridge. Instead, mutations in this region had a profound deleterious effect on the ribosome assembly. 相似文献
4.
Protoplasma - Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and... 相似文献
5.
Jimmy H. Saw Anja Spang Katarzyna Zaremba-Niedzwiedzka Lina Juzokaite Jeremy A. Dodsworth Senthil K. Murugapiran Dan R. Colman Cristina Takacs-Vesbach Brian P. Hedlund Lionel Guy Thijs J. G. Ettema 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1678)
The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell. 相似文献
6.
Foster CB 《Molecular biology and evolution》2005,22(3):383-386
In all three branches of life, some organisms incorporate the rare amino acid selenocysteine. Selenoproteins are relevant to the controversy over the metabolic features of the archaeal ancestor of eukaryotes because among archaea, several known selenoproteins are involved in methanogenesis and autotrophic growth. Although the eukaryotic selenocysteine-specific translation apparatus and at least one selenoprotein appear to be of archaeal origin, selenoproteins have not been identified among sulfur-metabolizing crenarchaeotes. In this regard, both the phylogeny and function of archaeal selenoproteins are consistent with the argument that the archaeal ancestor was a methanogen. Selenium, however, is abundant in sulfur-rich environments, and some anaerobic bacteria reduce sulfur and have selenoproteins similar to those in archaea. As additional archaeal sequence data becomes available, it will be important to determine whether selenoproteins are present in nonmethanogenic archaea, especially the sulfur-metabolizing crenarchaeotes. 相似文献
7.
A possible circular RNA at the origin of life 总被引:1,自引:0,他引:1
The increasing volume of sequenced genomes and the recent techniques for performing in vitro molecular evolution have rekindled the interest for questions on the origin of life. Nevertheless, a gap continues to exist between the research on prebiotic chemistry and molecule generation, on one hand, and the study of molecular fossils preserved in genomes, on the other. Here we attempt to fill this gap by using some assumptions about the prebiotic scenario (including a strong stereochemical basis for the genetic code) to determine the RNA sequences more likely to appear and subsist. A set of minimal RNA rings is exhaustively determined; a subset of them is then selected through stability arguments, and a particular ring (AL ring) is finally singled out as the most likely winner of this prebiotic game. The rings happen to have several structural and statistical properties of modern genes: a repeated AUG codon appears spontaneously (and is thus made available for becoming a start signal), the form AUG/STOP emerges, and frequency patterns resemble those of present genes. The whole set of rings was also compared to a database of tRNAs, considering the conserved positions (located in the free parts of the molecule, essentially the loops); the ring that most closely matched tRNA sequences-and matched, in fact, the consensus of tRNA at all the aligned positions-was AL, the same ring independently selected before. The unselected emergence of gene-like features through two simple selection steps and the close similarity between the finally selected ring and tRNA (including some remarkable features of the resulting alignment) suggest a possible link between the prebiotic world and the first biological molecules, which is amenable for experimental testing. Even if our scenario is partially wrong, the unlikely coincidences should provide useful hints for other efforts. 相似文献
8.
Early evolution and the origin of eukaryotes 总被引:35,自引:0,他引:35
Mitchell L. Sogin 《Current opinion in genetics & development》1991,1(4):457-463
Our understanding of evolutionary relationships in the eukaryotic world has been revolutionized by molecular systematics. Phylogenies based upon comparisons of rRNAs define five major eukaryotic assemblages plus a series of paraphyletic protist lineages. Comparison of conserved genes that were duplicated prior to the divergence of eubacteria, archaebacteria, and eukaryotes, positions the root of the universal tree within the eubacterial line of descent. In this review a novel model is presented which uses the rRNA and protein based phylogenies to describe the evolutionary origins of eukaryotes. 相似文献
9.
10.
F.N. Chang 《Analytical biochemistry》1975,63(2):371-379
A procedure for the quantitative determination of one RNA minor base in approximately 1800–2000 nucleotides is described. This procedure is useful for the analysis of minor base content in systems where in vivo labeling of RNAs to high specific activity is not readily achieved. 相似文献
12.
13.
Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity. 相似文献
14.
Matthew R. Edwards 《Origins of life and evolution of the biosphere》1989,19(1):69-72
Numerous attempts have recently been made to ascribe a preeminent role to RNA enzymes in primitive life systems. A model is proposed in which coenzyme-dependent RNA enzymes were initially organized in multienzyme complexes featuring (1) the continuous attachment of substrates to CoA-like carriers, as in fatty acid synthesis; and (2) the ordering of RNA enzymes via mRNA-like instructional strands. In this format, RNA enzymes would not have been required to recognized and specifically bind soluble substrates. The enzymes in this case may have required far less complexity than contemporary protein enzymes and thus less genetic information for their synthesis. An analogy is made between the proposed scheme and the protein translation mechanism, for which it may have been an evolutionary precursor. 相似文献
15.
Michael S. Parker Renu Sah Ambikaipakan Balasubramaniam Floyd R. Sallee Edwards A. Park Steven L. Parker 《Amino acids》2014,46(7):1589-1604
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins. 相似文献
16.
Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton 总被引:9,自引:0,他引:9
The antibiotic thiostrepton, a thiazole-containing peptide, inhibits translation and ribosomal GTPase activity by binding directly to a limited and highly conserved region of the large subunit ribosomal RNA termed the GTPase center. We have previously used a filter binding assay to examine the binding of ribosomal protein L11 to a set of ribosomal RNA fragments encompassing the Escherichia coli GTPase center sequence. We show here that thiostrepton binding to the same RNA fragments can also be detected in a filter binding assay. Binding is relatively independent of monovalent salt concentration and temperature but requires a minimum Mg2+ concentration of about 0.5 mM. To help determine the RNA features recognized by L11 and thiostrepton, a set of over 40 RNA sequence variants was prepared which, taken together, change every nucleotide within the 1051 to 1108 recognition domain while preserving the known secondary structure of the RNA. Binding constants for L11 and thiostrepton interaction with these RNAs were measured. Only a small number of sequence variants had more than fivefold effects on L11 binding affinities, and most of these were clustered around a junction of helical segments. These same mutants had similar effects on thiostrepton binding, but more than half of the other sequence changes substantially reduced thiostrepton binding. On the basis of these data and chemical modification studies of this RNA domain in the literature, we propose that L11 makes few, if any, contacts with RNA bases, but recognizes the three-dimensional conformation of the RNA backbone. We also argue from the data that thiostrepton is probably sensitive to small changes in RNA conformation. The results are discussed in terms of a model in which conformational flexibility of the GTPase center RNA is functionally important during the ribosome elongation cycle. 相似文献
17.
Small-subunit ribosomal RNA sequence from Naegleria gruberi supports the polyphyletic origin of amoebas 总被引:2,自引:0,他引:2
We have sequenced the small-subunit ribosomal RNA gene of the amoebo-
flagellate protozoan Naegleria gruberi. Comparison of this sequence with
the rRNA sequences of other eukaryotes resulted in a phylogenetic tree that
supports the suggested polyphyletic origin of amoebas and suggests a
flagellate ancestry for Naegleria.
相似文献
18.
19.
The 18S ribosomal RNA sequence of the sea anemone Anemonia sulcata and its evolutionary position among other eukaryotes 总被引:2,自引:0,他引:2
Evolutionary trees based on partial small ribosomal subunit RNA sequences of 22 metazoa species have been published [(1988) Science 239, 748-753]. In these trees, cnidarians (Radiata) seemed to have evolved independently from the Bilateria, which is in contradiction with the general evolutionary view. In order to further investigate this problem, the complete srRNA sequence of the sea anemone Anemonia sulcata was determined and evolutionary trees were constructed using a matrix optimization method. In the tree thus obtained the sea anemone and Bilateria together form a monophyletic cluster, with the sea anemone forming the first line of the metazoan group. 相似文献
20.
The phylum Microsporidia comprises a species-rich group of minute, single-celled, and intra-cellular parasites. Lacking normal mitochondria and with unique cytology, microsporidians have sometimes been thought to be a lineage of ancient eukaryotes. Although phylogenetic analyses using small-subunit ribosomal RNA (SSU-rRNA) genes almost invariably place the Microsporidia among the earliest branches on the eukaryotic tree, many other molecules suggest instead a relationship with fungi. Using maximum likelihood methods and a diverse SSU-rRNA data set, we have re-evaluated the phylogenetic affiliations of Microsporidia. We demonstrate that tree topologies used to estimate likelihood model parameters can materially affect phylogenetic searches. We present a procedure for reducing this bias: "tree-based site partitioning," in which a comprehensive set of alternative topologies is used to estimate sequence data partitions based on inferred evolutionary rates. This hypothesis-driven approach appears to be capable of utilizing phylogenetic information that is not available to standard likelihood implementations (e.g., approximation to a gamma distribution); we have employed it in maximum likelihood and Bayesian analysis. Applying our method to a phylogenetically diverse SSU-rRNA data set revealed that the early diverging ("deep") placement of Microsporidia typically found in SSU-rRNA trees is no better than a fungal placement, and that the likeliest placement of Microsporidia among non-long-branch eukaryotic taxa is actually within fungi. These results illustrate the importance of hypothesis testing in parameter estimation, provide a way to address certain problems in difficult data sets, and support a fungal origin for the Microsporidia. 相似文献