首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy.  相似文献   

2.
This article examines the emergence of offshore renewable energy (i.e., offshore wind, ocean, and tidal energy) in the Asia-Pacific region with a particular focus on developments in China, South Korea, Australia, and New Zealand. It outlines plans for the development of offshore wind, tidal, and wave energy projects as well as emerging legal and policy measures supporting the growth of offshore renewable energy in the region. The article highlights that, although some progress has been made on laws and other measures to facilitate offshore renewable energy in the Asia-Pacific region, clear regulatory frameworks are still emerging in these jurisdictions.  相似文献   

3.
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.  相似文献   

4.
Increased deployment of renewable energy can contribute towards mitigating climate change and improving air quality, wealth and development. However, renewable energy technologies are not free of environmental impacts; thus, it is important to identify opportunities and potential threats from the expansion of renewable energy deployment. Currently, there is no cross‐national comprehensive analysis linking renewable energy potential simultaneously to socio‐economic and political factors and biodiversity priority locations. Here, we quantify the relationship between the fraction of land‐based renewable energy (including solar photovoltaic, wind and bioenergy) potential available outside the top biodiversity areas (i.e. outside the highest ranked 30% priority areas for biodiversity conservation) within each country, with selected socio‐economic and geopolitical factors as well as biodiversity assets. We do so for two scenarios that identify priority areas for biodiversity conservation alternatively in a globally coordinated manner vs. separately for individual countries. We show that very different opportunities and challenges emerge if the priority areas for biodiversity protection are identified globally or designated nationally. In the former scenario, potential for solar, wind and bioenergy outside the top biodiversity areas is highest in developing countries, in sparsely populated countries and in countries of low biodiversity potential but with high air pollution mortality. Conversely, when priority areas for biodiversity protection are designated nationally, renewable energy potential outside the top biodiversity areas is highest in countries with good governance but also in countries with high biodiversity potential and population density. Overall, these results identify both clear opportunities but also risks that should be considered carefully when making decisions about renewable energy policies.  相似文献   

5.
Organic photovoltaics (OPVs) have become a potential candidate for clean and renewable photovoltaic productions. This work examines the current cost drivers and potential avenues to reduce costs for organic solar modules by constructing a comprehensive bottom‐up cost model. The direct manufacturing cost (MC) and the minimum sustainable price (MSP) for an opaque single solar module (SSM) (MC = 187 ¥ m?2, MSP = 297 ¥ m?2) and for a tandem solar module (MC = 224 ¥ m?2, MSP = 438 ¥ m?2) are analyzed in detail. Within this calculation, the most expensive layers and processing steps are identified and highlighted. Importantly, the low levelized cost of energy (LCOE) value for an SSM with a 10% power conversion efficiency in a 20‐year range from 0.185 to 0.486 ¥ kWh?1, with a national average of 0.324 ¥ kWh?1 in China under an average solar irradiance of 1200 kWh m?2 year?1. Moreover, the impact on the cost of alternative materials and constructions, process throughputs, module efficiency, and module lifetime, etc., is presented and avenues to further reduce the MSP and LCOE values are indicated. The analysis shows that OPVs can emerge as a competitive alternative to established power generation technologies if the remaining issues (e.g., active layer material cost, module efficiency, and lifetime) can be resolved.  相似文献   

6.
It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.  相似文献   

7.
Capsule Black Guillemots Cepphus grylle were recorded diving in the Pentland Firth to an average depth of 32 metres and an overall maximal depth of 43 metres. The majority (88%) of dives were benthic with a median dive duration of 95 seconds, and a maximal dive duration of 131 seconds. The results provide empirical evidence that Black Guillemots use depths within the water column at which tidal turbines are likely to operate. Although limited, our data suggest the potential for interactions between Black Guillemots and marine renewable energy devices.  相似文献   

8.
Marine spatial planning (MSP) has been gaining in stature recently as an ecosystem-based tool for the management of marine space that promotes the sustainable and optimal use of resources with minimal stakeholder conflicts. Malta is the quintessential maritime nation, with a disproportionately large marine area compared to its terrestrial area. Nonetheless, its limited coastline, a considerable portion of which is inaccessible, poses inevitable conflicts between multiple marine activities and designations, including aquaculture, fishing, bunkering, coastal tourism, navigation, renewable energy installations, conservation of biological diversity and protected areas (on ecological criteria). This article makes the case to implement MSP-based policies and an applicable legal framework in the Maltese Islands.  相似文献   

9.
Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land‐based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus × giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation.  相似文献   

10.
异质背景下黄河三角洲潮沟的遥感提取方法   总被引:1,自引:0,他引:1  
以黄河三角洲为研究区域,针对该区域潮滩背景异质性强、潮沟宽度不一和潮沟各向异性强等特点,选取高分二号多光谱影像作为数据源,首先利用归一化水体指数(NDWI)和最大类间方差法(OTSU)提取宽阔潮沟,其次,使用改进的模糊C均值算法(MFCM)和多尺度高斯匹配滤波(MGMF),在削弱潮滩背景异质性的基础上增强细小潮沟,接着利用自适应阈值分割提取细小潮沟,最后合并细小潮沟和宽阔潮沟,形成完整的潮沟网络.不仅充分利用了高分二号影像的空间分辨率和光谱信息,也顾及了线状要素的几何特征,保证了潮沟提取结果的空间连续性.在4个局部测试区域,提取结果的Kappa系数大于0.8,总体精度高于97%,优于最大似然法和支持向量机.结果表明: 本研究提出的方法能够较完整地提取不同类型的潮沟,表现出较好的提取精度和稳定性,能够为潮沟的实时动态监测及其发育演化规律研究提供科学参考.  相似文献   

11.
Increasing evidence has been accumulated for the effectiveness of acupuncture therapy in relieving pain. However, there are limited data on regulation of protein expression after electroacupuncture (EA) intervention. Thus, the present study is designed to determine changes in protein expression following EA stimulation in rats with sciatic nerve chronic constrictive injury (CCI) induced neuropathic pain. Sixty Wistar rats were equally randomized into normal control group, CCI group, and CCI with EA stimulation (EA) group. The CCI model was established by ligature of the left sciatic nerve. EA stimulation was applied at Zusanli (ST36) and Yanglingquan (GB34) in the EA group. Differentially expressed hypothalamic proteins in the three groups were identified by 2-D gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The functional clustering and pathway of the identified proteins were analyzed by Mascot software. Results showed that, after CCI, the thermal pain threshold of the affected hind footpad was decreased and was reversed gradually by 12 sessions of EA treatment. Following EA intervention, there were 17 hypothalamic proteins identified with significant changes in the expression (>twofold). Three gene-ontologies (oxidoreductase activity, oxidation reduction, and protein binding) were enriched, while there was a significant regulation of glycolysis/gluconeogenesis/hexose metabolism pathway. These data demonstrate that EA intervention can attenuate pain via regulation of expression of multiple proteins in the hypothalamus. Further, hypothalamic glucose metabolism may be important in supporting energy and neurotransmitter homeostasis in the effects of EA intervention.  相似文献   

12.
Harbor porpoises (Phocoena phocoena) are commonly observed in Oregon's nearshore marine environment yet knowledge of their ecosystem use and behavior remains limited, generating concerns for potential impacts on this species from future coastal development. Passive acoustic monitoring was used to investigate spatial and temporal variations in the presence and foraging activity of harbor porpoises off the Oregon coast from May through October 2014. Digital monitoring devices (DMONs) were deployed to record acoustic data (320 kHz sample rate) in two neighboring but bathymetrically different locations off the Oregon coast: (1) a site on the 30 m isobath in close proximity (<50 m) to a rocky reef, and (2) a site on the 60 m isobath in an open sandy environment. Data were analyzed with respect to two dynamic cyclic variables: diel and tidal phase. Porpoise presence at the rocky reef site was aligned with the ebb phase of the tidal forcing, while, harbor porpoise presence and foraging at the offshore, sandy bottom site was associated with night‐time foraging. The spatial and temporal patterns identified in this study suggest harbor porpoise habitat use is modulated by specific environmental conditions particular to each site that maximize foraging efficiency.  相似文献   

13.
There has been rapid economic development in China in recent decades, and demand for energy has consequently been increasing rapidly. Development and utilisation of clean and renewable energy has been promoted by the Chinese government to help sustain long-term and stable development. Sugarcane is being increasingly used in several countries as feedstock for renewable energy products, and is a major and expanding crop in southern China. In this paper, we discuss the potential of sugarcane as a feedstock for bioenergy production in China. It includes a review of (1) the existing sugarcane industry in China and key bio-physical factors affecting the extent to which sugarcane-based industries could supply feedstock for renewable energy production in China, (2) the economic and policy factors which are likely to affect production of bioenergy from sugarcane in China, and (3) recommendations on actions and policies that may assist with appropriate development of bioenergy production from sugarcane in China. Existing and expected future economic conditions are unlikely to favour production of biofuel from the sugar component in cane. However, the fibre component of cane remains an under-utilised resource component. A conclusion is made that sugarcane fibre has potential to contribute towards renewable electricity production in China. However, at present, favourable incentives do not exist to encourage this production. It is suggested that policies to facilitate cost-effective production of renewable electricity by sugar mills, consistent with national objectives regarding production of renewable energy, be considered by governments. Priorities for future research are in improving biomass yields per unit area of land and technologies for low-cost conversion of lignocellulosic biomass into biofuel.  相似文献   

14.
Emotional intelligence (EI) and morningness–eveningness (M-E) preference have been shown to influence mood states. The present article investigates the way in which these two constructs may interact, influencing morning and evening mood levels. A sample of 172 participants completed a multidimensional mood scale measuring energetic arousal (EA), tense arousal (TA), and hedonic tone at 7:00 and at 22:00. As expected, morning and evening types experienced higher EA at their preferred time of day; effects of M-E on other mood dimensions were weaker. EI was found to correlate with lower TA, but the association was stronger at 22:00, perhaps reflecting the role of EI in managing the social events characteristic for the evening hours. An interactive effect of EI and M-E was found for both diurnal changes and morning levels of EA. Namely, in individuals higher in EI, there appeared a more marked synchrony effect between chronotype and EA, which was absent in those low in EI; individuals higher in EI showed more pronounced diurnal changes in EA characteristic for their chronotype (i.e., higher EA at morning hours in morning chronotypes; higher EA at evening hours in evening chronotypes), while in participants low in EI, diurnal changes in EA were smaller. Moreover, the characteristic positive association between morningness and EA during morning hours was apparent only in those high in EI. These findings suggest that individual differences in circadian variation in mood reflect several factors, including an endogenous rhythm in energy, the distribution of social activities throughout the day, and the person’s awareness of their own energy level.  相似文献   

15.
Transitioning from fossil fuels to renewable energy is fundamental for halting anthropogenic climate change. However, renewable energy facilities can be land‐use intensive and impact conservation areas, and little attention has been given to whether the aggregated effect of energy transitions poses a substantial threat to global biodiversity. Here, we assess the extent of current and likely future renewable energy infrastructure associated with onshore wind, hydropower and solar photovoltaic generation, within three important conservation areas: protected areas (PAs), Key Biodiversity Areas (KBAs) and Earth's remaining wilderness. We identified 2,206 fully operational renewable energy facilities within the boundaries of these conservation areas, with another 922 facilities under development. Combined, these facilities span and are degrading 886 PAs, 749 KBAs and 40 distinct wilderness areas. Two trends are particularly concerning. First, while the majority of historical overlap occurs in Western Europe, the renewable electricity facilities under development increasingly overlap with conservation areas in Southeast Asia, a globally important region for biodiversity. Second, this next wave of renewable energy infrastructure represents a ~30% increase in the number of PAs and KBAs impacted and could increase the number of compromised wilderness areas by ~60%. If the world continues to rapidly transition towards renewable energy these areas will face increasing pressure to allow infrastructure expansion. Coordinated planning of renewable energy expansion and biodiversity conservation is essential to avoid conflicts that compromise their respective objectives.  相似文献   

16.
Understanding temporal patterns in distribution, occurrence and behaviour is vital for the effective conservation of cetaceans. This study used cetacean click detectors (C-PODs) to investigate spatial and temporal variation in occurrence and foraging activity of the Indo-Pacific bottlenose (Tursiops aduncus) and Indian Ocean humpback (Sousa plumbea) dolphins resident in the Menai Bay Conservation Area (MBCA), Zanzibar, Tanzania. Occurrence was measured using detection positive minutes. Inter-click intervals were used to identify terminal buzz vocalisations, allowing for analysis of foraging activity. Data were analysed in relation to spatial (location) and temporal (monsoon season, diel phase and tidal phase) variables. Results showed significantly increased occurrence and foraging activity of dolphins in southern areas and during hours of darkness. Higher occurrence at night was not explained by diel variation in echolocation rate and so were considered representative of occurrence patterns. Both tidal phase and monsoon season influenced occurrence but results varied among sites, with no general patterns found. Foraging activity was greatest during hours of darkness, High water and Flood tidal phases. Comparisons of echolocation data among sites suggested differences in the broadband click spectra of MBCA dolphins, possibly indicative of species differences. These dolphin populations are threatened by unsustainable fisheries bycatch and tourism activities. The spatial and temporal patterns identified in this study have implications for future conservation and management actions with regards to these two threats. Further, the results indicate future potential for using passive acoustics to identify and monitor the occurrence of these two species in areas where they co-exist.  相似文献   

17.
Myelencephalon-specific protease (MSP), first identified in the rat and now known to have a human homologue (human kallikrein 6), is preferentially expressed in the central nervous system (CNS), compared with nonneural tissues. MSP has been postulated to have trypsin-like activity, is upregulated in response to glutamate receptor-mediated excitotoxic injury in the CNS, and is downregulated in the brain of Alzheimer's patients. The preferential expression of this enzyme by oligodendrocytes in CNS white matter points to a role in myelin homeostasis. To further characterize the activity and substrate specificity of this newly identified enzyme, we have heterologously expressed MSP in a baculovirus/insect cell line system. We demonstrate that recombinant MSP exhibits a broad specificity for cleavage after arginine but not lysine residues, with kinetic characteristics intermediate between trypsin and pancreatic kallikrein. We show that the pro form of MSP does not self-activate but, rather, requires cleavage after lysine, indicating that mature active MSP is regulated by a distinct protease. MSP may be regulated in part by autolysis, since the active protein is readily inactivated through autolysis at specific internal arginine positions. Additionally, we show that MSP is abundantly expressed in inflammatory cells at sites of demyelination in the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis (MS). In conjunction with data demonstrating the ability of MSP to degrade myelin-associated as well as several extracellular matrix proteins, these findings delineate MSP as a broad-specificity arginine-specific protease with the potential to play a key role in immune-mediated demyelination.  相似文献   

18.
The global demand for renewable energy continues to increase rapidly and with it the necessity to develop and test new technologies to deliver the power. Offshore renewable energy sources that harness wind, wave or tidal power are of major interest. Technological advances in these directions have not been matched by a clear understanding of the environmental impacts of the new devices, with most existing research concentrated on the impacts of offshore wind farms. Decisions often continue to be made without the support of a clear evidence base. Here we use an underwater tidal turbine, SeaGen, constructed and operated within the Strangford Lough marine protected area in Northern Ireland, as a case study to explore the potential impacts of the turbine as points of concern and argumentation in the decision-making processes. We use information obtained from official documents and one-to-one interviews with the main stakeholders. Our results demonstrate that during the construction and operation of the turbine the perceptions and views of different stakeholders sometimes disagreed but were often surprisingly similar in relation to both likelihood and intensity of the potential impacts of the turbine on marine biodiversity, ecosystem services and human well-being in general. The overall consensus of views was refined and evolved under an adaptive management approach over the 10 years of the discussions and decision-making processes. The results are discussed in relation to cumulative gains in knowledge, future arrays of many underwater turbines and multiple use of oceans within social ecological systems to maintain the conservation of marine biodiversity.  相似文献   

19.
The biological activity of radiosensitizers is associated to their electron affinity (EA), which can be divided in two main processes: vertical and adiabatic. In this work, we calculated the EAs of nitrofurans and nitroimidazoles (Fig. 2) using Hartree–Fock (HF) and density functional theory (DFT) methods and evaluated solvent effects (water and carbon tetrachloride) on EAs. For water, we combined the polarized continuum model (PCM) and free energy perturbation (FEP) (finite difference thermodynamic integration, FDTI) methods. For carbon tetrachloride, we used the FDTI method. The values of adiabatic EA obtained are in agreement with experimental data (deviations of 0.013 eV). The vertical EAs were calculated according to Cederbaum's outer valence Green function (OVGF) method. This methodology, which relies on theoretical aspects of free energy calculations on charged molecules in solution, was used to select potential selective radiosensitizers from recently reported compounds and could be helpful in the rational design of new and more selective bioreductive anticancer drugs.  相似文献   

20.
吕天宇  曾晨  刘泽瑾  杨婧 《生态学报》2020,40(24):8974-8987
全球气候变暖已成为21世纪威胁人类可持续发展的严峻挑战,减少CO2排放是抑制气候变暖的重要路径。从全球碳减排的宏观视角出发,以98个国家为研究对象,基于总商品贸易和化石能源贸易的引力模型构建两种空间互动关系,利用扩展后的S-STIRPAT模型对2000、2005、2010年和2014年人均CO2排放的驱动机制和空间溢出效应展开实证分析,并基于发展差异视角进一步探究发达和欠发达国家CO2排放驱动机制异同。研究结果表明:(1)2000、2005、2010年和2014年人均CO2排放溢出效应呈增强态势。(2)城市化水平、人均GDP、能源强度对人均CO2排放产生显著正向影响,可再生能源使用率对人均CO2排放产生显著负向影响。(3)发展差异视角下,城市化水平、人均GDP和能源强度对欠发达国家影响更大,可再生能源使用率对发达国家影响更为显著。根据研究结果建议加强发达国家和欠发达国家低碳技术交流与合作,同时积极调整能源结构以减少CO2排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号