首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bairy S  Wong CF 《Proteins》2011,79(8):2491-2504
We used three models of the epidermal growth factor receptor (EGFR) signaling pathway mimicking three different cell lines to study the effects of kinetics of drug binding on influencing molecular signaling in the pathways. With no incubation of drugs before the external cue epidermal growth factor (EGF) was applied, we found that fast kinetics of binding to protein kinases was advantageous in suppressing the production of the Extracellular signal-regulated kinase (ERK) that triggers cell proliferation, with some exceptions. Incubation of a drug with a protein kinase target for an hour before a pathway was initiated with an external cue made kinetics less significant, so did high concentration of drugs. In addition, we found that applying a drug to a protein kinase mostly affected downstream signaling although upstream events were also affected in a few cases. In examining whether applying two drugs to two protein kinase targets in the pathways could produce synergistic effects, we found positive, negative, or no effects, depending on the protein kinases targeted and the pathway model considered.  相似文献   

2.
3.
Yang JS  Lai EC 《Molecular cell》2011,43(6):892-903
Since the establishment of a canonical animal microRNA biogenesis pathway driven by the RNase III enzymes Drosha and Dicer, an unexpected variety of alternative mechanisms that generate functional microRNAs have emerged. We review here the many Drosha-independent and Dicer-independent microRNA biogenesis strategies characterized over the past few years. Beyond reflecting the flexibility of small RNA machineries, the existence of noncanonical pathways has consequences for interpreting mutants in the core microRNA machinery. Such mutants are commonly used to assess the consequences of "total" microRNA loss, and indeed, they exhibit many overall phenotypic similarities. Nevertheless, ongoing studies reveal a growing number of settings in which alternative microRNA pathways contribute to distinct phenotypes among core microRNA biogenesis mutants.  相似文献   

4.
Epidermal growth factor (EGF) and its receptor (EGFR) are involved in hormone-refractory growth and poor prognosis of a subgroup of human prostate cancer. In this communication, we investigated the regulation of PSA by the EGFR signaling pathway using LNCaP C-81 prostate cancer cells. Administration of EGF stimulated the growth of LNCaP C-81 cells, however, PSA expression and secretion were suppressed. An EGFR inhibitor, AG1478, abrogated the PSA suppression effect by EGF, in concurrence with the suppression of tyro-phosphorylation levels of EGFR. Interestingly, the AR level was also decreased in EGF-treated LNCaP C-81 cells. Moreover, LY294002, but not PD98059, inhibited the PSA and AR suppression effect by EGF in concurrence with the suppression of phosphorylation levels of Akt. In conclusion, our results strongly suggest the existence of a novel androgen-independent PSA regulatory mechanism, i.e., the EGFR signaling pathway negatively regulates PSA expression which may be induced by the alteration of AR expression via the PI3K-Akt pathway in LNCaP C-81 cells.  相似文献   

5.
J Zhang  J Jia  F Zhu  X Ma  B Han  X Wei  C Tan  Y Jiang  Y Chen 《Molecular bioSystems》2012,8(10):2645-2656
Some drugs, such as anticancer EGFR tyrosine kinase inhibitors, elicit markedly different clinical response rates due to differences in drug bypass signaling as well as genetic variations of drug target and downstream drug-resistant genes. The profiles of these bypass signaling are expected to be useful for improved drug response prediction, which have not been systematically explored previously. In this work, we searched and analyzed 16 literature-reported EGFR tyrosine kinase inhibitor bypass signaling routes in the EGFR pathway, which include 5 compensatory routes of EGFR transactivation by another receptor, and 11 alternative routes activated by another receptor. These 16 routes are reportedly regulated by 11 bypass genes. Their expression profiles together with the mutational, amplification and expression profiles of EGFR and 4 downstream drug-resistant genes, were used as new sets of biomarkers for identifying 53 NSCLC cell-lines sensitive or resistant to EGFR tyrosine kinase inhibitors gefitinib, erlotinib and lapatinib. The collective profiles of all 16 genes distinguish sensitive and resistant cell-lines are better than those of individual genes and the combined EGFR and downstream drug resistant genes, and their derived cell-line response rates are consistent with the reported clinical response rates of the three drugs. The usefulness of cell-line data for drug response studies was further analyzed by comparing the expression profiles of EGFR and bypass genes in NSCLC cell-lines and patient samples, and by using a machine learning feature selection method for selecting drug response biomarkers. Our study suggested that the profiles of drug bypass signaling are highly useful for improved drug response prediction.  相似文献   

6.
7.
Proline‐rich tyrosine kinase 2 (Pyk2) is a member of focal adhesion kinase (FAK) non‐receptor tyrosine kinase family and has been found to promote cancer cell survival, proliferation, migration, invasion, and metastasis. Pyk2 takes part in different carcinogenic signaling pathways to promote cancer progression, including epidermal growth factor receptor (EGFR) signaling pathway. EGFR signaling pathway is a traditional carcinogenic signaling pathway, which plays a critical role in tumorigenesis and tumor progression. FAK inhibitors have been reported to fail to get the ideal anti‐cancer outcomes because of activation of EGFR signaling pathway. Better understanding of Pyk2 downstream targets and interconnectivity between Pyk2 and carcinogenic EGFR signaling pathway will help finding more effective targets for clinical anti‐cancer combination therapies. Thus, the interconnectivity between Pyk2 and EGFR signaling pathway, which regulates tumor development and metastasis, needs to be elucidated. In this review, we summarized the downstream targets of Pyk2 in cancers, focused on the connection between Pyk2 and EGFR signaling pathway in different cancer types, and provided a new overview of the roles of Pyk2 in EGFR signaling pathway and cancer development.  相似文献   

8.
目的:探讨针刺胃经穴后提取的血清对大鼠胃黏膜细胞表皮生长因子受体(EGFR)后信使物质表达的影响.方法:60只大鼠随机分为模型血清组、胃经血清组、胆经血清组、胃经血清 PD153035组和胆经血清 PD153035组,采用水浸束缚法制作胃黏膜损伤大鼠模型,利用链霉蛋白酶消化法分离胃黏膜细胞,分别用EGFR抑制剂PD153035和血清孵育胃黏膜细胞,应用酶联免疫吸附法检测PLCγ-1活性,同位素掺入法检测PKC活性,逆转录聚合酶链反应法检测c-mye的表达水平.结果:模型血清组大鼠胃黏膜细胞PLCγ-1,PKC和c-myc微弱表达;胃经血清组和胆经血清组大鼠胃黏膜细胞PLCγ-1,PKC和c-myc呈现较强表达,其中胃经血清组表达最高,两组相比较有显著性差异(P<0.01):胃经血清 PD153035组和胆经血清 PD153035组大鼠胃黏膜细胞PLCγ-1,PKC和c-myc的表达较弱,胃经血清组与胃经血清 PD153035组比较有显著性差异(P<0.01).结论:针刺胃经穴后提取的血清能诱导大鼠胃黏膜细胞EGFR后信使物质的活化,并且存在经脉-脏腑的特异性联系.  相似文献   

9.
Deregulation of epidermal growth factor receptor (EGFR) signaling is frequently observed in non-small cell lung cancer (NSCLC). The present study aimed to determine the impact of dihydromyricetin (DHM) on NSCLC, a natural compound extracted from Ampelopsis grossedentata with various pharmacological activities. Results of the present study demonstrated that DHM may act as a promising antitumor agent for NSCLC therapy, inhibiting the growth of cancer cells in vitro and in vivo. Mechanistically, results of the present study demonstrated that exposure to DHM downregulated the activity of wild-type (WT) and mutant EGFRs (mutations, exon 19 deletion, and L858R/T790M mutation). Moreover, western blot analysis indicated that DHM induced cell apoptosis via suppression of the antiapoptotic protein, survivin. Results of the present study further demonstrated that depletion or activation of EGFR/Akt signaling may regulate survivin expression though modulating ubiquitination. Collectively, these results suggested that DHM may act as a potential EGFR inhibitor, and may provide a novel choice of treatment strategy for patients with NSCLC.  相似文献   

10.
STAT-mediated EGFR signaling in cancer   总被引:6,自引:0,他引:6  
  相似文献   

11.
It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.  相似文献   

12.
13.
14.
15.
16.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   

17.
We have previously shown that prothrombin, a blood coagulation factor, can cause an inhibition of DNA synthesis in normal rat hepatocytes. To explore the mechanisms of this prothrombin action, we examined its effects on the activation of fibronectin receptor integrin alpha5, since fibronectin was found to be degraded by prothrombin actions in primary hepatocyte cultures. We found that prothrombin treatment of rat hepatocytes without addition of any growth factor induced tyrosine phosphorylation of integrin alpha5 and interaction of integrin alpha5 with epidermal growth factor receptor (EGFR), leading to EGFR tyrosine phosphorylation at tyrosine residues Tyr-845 and Tyr-1173. EGFR tyrosine phosphorylation triggered phosphorylation of its down-stream target Shc and the activation of the c-Jun N-terminal kinase (JNK) pathway. Prothrombin also induced hepatocyte apoptosis, a change in cell shape and activation of caspase 3 pathway. The JNK pathway is most likely involved in prothrombin-induced hepatocyte apoptosis, because pre-treatment of hepatocytes with JNK kinase inhibitor II (SP600125) antagonized these prothrombin actions. The data suggest that integrin-related EGFR activation by prothrombin can induce cell growth inhibition and apoptosis via an EGFR-JNK signaling pathway.  相似文献   

18.
miRNA in embryonic development: the taming of Nodal signaling   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
The epidermal growth factor receptor (EGFR) family comprehends four different tyrosine kinases (EGFR, ErbB-2, ErbB-3, and ErbB-4) that are activated following binding to epidermal growth factor (EGF)-like growth factors. It has been long established that the EGFR system is involved in tumorigenesis. These proteins are frequently expressed in human carcinomas and support proliferation and survival of cancer cells. However, activation of the EGFR in non-malignant cell populations of the neoplastic microenvironment might also play an important role in cancer progression. EGFR signaling regulates in tumor cells the synthesis and secretion of several different angiogenic growth factors, including vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF). Overexpression of ErbB-2 also leads to increased expression of angiogenic growth factors, whereas treatment with anti-EGFR or anti-ErbB-2 agents produces a significant reduction of the synthesis of these proteins by cancer cells. EGFR expression and function in tumor-associated endothelial cells has also been described. Therefore, EGFR signaling might regulate angiogenesis both directly and indirectly. In addition, activation of EGFR is involved in the pathogenesis of bone metastases. Within the bone marrow microenvironment, cancer cells stimulate the synthesis of osteoclastogenic factors by residing stromal cells, a phenomenon that leads to bone destruction. It has been shown that EGFR signaling regulates the ability of bone marrow stromal cells to produce osteoclastogenic factors and to sustain osteoclast activation. Taken together, these findings suggest that the EGFR system is an important mediator, within the tumor microenvironment, of autocrine and paracrine circuits that result in enhanced tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号