首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates a potential mechanism for the processing of acoustic information that is encoded in the spatiotemporal discharge patterns of auditory nerve (AN) fibres. Recent physiological evidence has demonstrated that some low-frequency cells in the anteroventral cochlear nucleus (AVCN) are sensitive to manipulations of the phase spectrum of complex sounds (Carney 1990b). These manipulations result in systematic changes in the spatiotemporal discharge patterns across groups of low-frequency AN fibres having different characteristic frequencies (CFS). One interpretation of these results is that these neurons in the AVCN receive convergent inputs from AN fibres with different CFS, and that the cells perform a coincidence detection or cross-correlation upon their inputs. This report presents a model that was developed to test this interpretation.  相似文献   

2.
Anatomical and physiological auditory data and pitch measurements are presented including some additional analysis. The data provide the basis for a new computer model of sustained chopper neurons in the ventral cochlear nucleus. New and old evidence indicating a preference for multiples of 0.4 ms in oscillations of chopper neurons in the cochlear nucleus of different species such as man, cats, and Guinea fowls, is summarized. Our hypothesis is that the time constant of 0.4 ms is due to the minimum synaptic delay of chopper neuron connections. Anatomical findings show that chopper neurons are indeed connected and can excite each other; a model of a circular network of neurons that are connected via synapses with a delay of 0.4 ms is thus plausible. Results concerning frequency tuning and dynamical properties of periodicity encoding of chopper neurons are reviewed. It is concluded that chopper neurons receive input both from auditory nerve fibres and onset neurons.  相似文献   

3.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

4.
Low-frequency sound localization depends on the neural computation of interaural time differences (ITD) and relies on neurons in the auditory brain stem that integrate synaptic inputs delivered by the ipsi- and contralateral auditory pathways that start at the two ears. The first auditory neurons that respond selectively to ITD are found in the medial superior olivary nucleus (MSO). We identified a new mechanism for ITD coding using a brain slice preparation that preserves the binaural inputs to the MSO. There was an internal latency difference for the two excitatory pathways that would, if left uncompensated, position the ITD response function too far outside the physiological range to be useful for estimating ITD. We demonstrate, and support using a biophysically based computational model, that a bilateral asymmetry in excitatory post-synaptic potential (EPSP) slopes provides a robust compensatory delay mechanism due to differential activation of low threshold potassium conductance on these inputs and permits MSO neurons to encode physiological ITDs. We suggest, more generally, that the dependence of spike probability on rate of depolarization, as in these auditory neurons, provides a mechanism for temporal order discrimination between EPSPs.  相似文献   

5.
6.
Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×10(9) SCZs per mm(3) of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain.  相似文献   

7.
Uptake and Release of D-Aspartate in the Guinea Pig Cochlear Nucleus   总被引:7,自引:6,他引:1  
Abstract: This study attempted to determine if l -glutamate (L-Glu) and/or l -aspartate (L-Asp) might be the transmitters of neurons that provide synaptic endings to the cochlear nucleus of the medulla. The uptake and release of D-[3H]aspartate (D-Asp), a putative marker for l -Glu and l -Asp, were measured in the guinea pig cochlear nucleus before and after destruction of the cochlear afferents by cochlear ablation. The cochlear nucleus was dissected into the anteroventral (AVCN), posteroventral (PVCN), and dorsal (DCN) cochlear nuclei. Subdivisions from unlesioned animals took up D-Asp, achieving concentrations in the tissues that were 13–20 times that in the medium. Subsequently, electrical stimulation evoked a Ca2+-dependent release of part of the D-Asp from each subdivision. Disarticulation of the middle ear ossicles, which attenuates acoustic stimulation, produced a modest inhibition of D-Asp release in each subdivision, but did not alter the uptake of D-Asp. Cochlear ablation strongly depressed both the uptake and the release of D-Asp in each subdivision, presumably as a result of destruction of the cochlear nerve endings in the cochlear nucleus. Nevertheless, after lesions, there was a preservation of the uptake and release of D-Asp in the DCN relative to the AVCN and PVCN. These residual activities in the DCN may be mediated by the axonal endings of the granule cells of the cochlear nucleus. The present findings support the hypothesis that the granule cells of the cochlear nucleus, as well as the cochlear nerve fibers, use l -Glu and/or l -Asp as transmitters.  相似文献   

8.
The tuberculo-ventral tract represents a short nervous circuit within the auditory cochlear nuclei. Tuberculo-ventral neurons of the dorsal cochlear nucleus send isofrequency inhibitory inputs to bushy cells of the ventral cochlear nucleus. Injection of wheat germ agglutinin conjugated to horseradish peroxidase into the rat ventral cochlear nucleus, labelled tuberculo-ventral neurons retrogradely in the deep polymorphic layer of the ipsilateral dorsal cochlear nucleus. Five to 20% of the perimeter of these cells was covered by synaptic boutons, most of which contained flat and pleomorphic vesicles. These boutons contained glycine and sometimes GABA. Occasional small axo-somatic boutons contained round vesicles and were immunonegative for both glycine and GABA. This study shows that the synaptic profile of tuberculo-ventral neurons is different from that of other medium-size glycinergic neurons within the polymorphic layer or more superficial regions of the dorsal cochlear nucleus like cartwheel neurons. In fact the latter mostly receive boutons that contain pleomorphic vesicles.  相似文献   

9.
We have investigated responses of the auditory nerve fibres (ANFS) and anteroventral cochlear nucleus (AVCN) units to narrowband 'single-formant' stimuli (SFSS). We found that low and medium spontaneous rate (SR) ANFS maintain greater amplitude modulation (AM) in their responses at high sound levels than do high SR units when sound level is considered in dB SPL. However, this partitioning of high and low SR units disappears if sound level is considered in dB relative to unit threshold. Stimuli with carrier frequencies away from unit best frequency (BF) were found to generate higher AM in responses at high sound levels than that observed even in most low and medium SR units for stimuli with carrier frequencies near BF. AVCN units were shown to have increased modulation depth in their responses when compared with high SR ANFS with similar BFS and to have increased or comparable modulation depth when compared with low SR ANFS. At sound levels where AM almost completely disappears in high SR ANFS, most AVCN units we studied still show significant AM in their responses. Using a dendritic model, we investigated possible mechanisms of enhanced AM in AVCN units, including the convergence of inputs from different SR groups of ANFS and a postsynaptic threshold mechanism in the soma.  相似文献   

10.
Summary The cochlea of the mole rat Cryptomys hottentotus was investigated with physiological and anatomical methods. In order to reveal the place-frequency map of the cochlea, iontophoretic HRP-applications were made in the cochlear nucleus at physiologically characterized locations. Subsequent HRP-transport in auditory nerve fibres and labeling patterns of spiral ganglion cells within the cochlea were evaluated.A cochlear place-frequency map was constructed from 17 HRP-applications in the cochlear nucleus at positions where neurons had characteristic frequencies between 0.1 and 12.6 kHz. As in other mammals, high frequencies were found to be represented at the cochlear base, low frequencies at the cochlear apex. The placefrequency map had three distinct parts which were characterized by their different slopes. A clear overrepresentation of the frequencies between 0.6 and 1 kHz was revealed, in this frequency range the slope of the place-frequency map amounted to 5.3 mm/octave. As calculated from the regression analysis, below 0.6 kHz the slope of the cochlear place-frequency map amounted to 0.24 mm/octave, above 1 kHz to 0.9 mm/octave.As in other mammals width of the basilar membrane (BM) increased from the cochlear base towards the cochlear apex. Also in concordance with the findings in other mammals, BM-thickness decreased from the cochlear base to the apex. However, it was remarkable to find that there was no or little change in BM-width and thickness between 40 and 85% BM-length. It was also revealed that scala tympani was only 1/10th the size found in the rat or other mammals of similar body size.On the basis of the cochlear place-frequency map and the morphological findings we speculate that in Cryptomys hottentotus an acoustic fovea is present in the frequency range between 0.6 and 1 kHz. In analogy to echolocating bats, about half of the cochlea is devoted to the analysis of a narrow frequency band within the hearing range.Abbreviations BM basilar membrane - CF characteristic frequency - CN cochlear nucleus  相似文献   

11.
Liu X  Yan Y  Wang Y  Yan J 《PloS one》2010,5(11):e14038

Background

Cortical neurons implement a high frequency-specific modulation of subcortical nuclei that includes the cochlear nucleus. Anatomical studies show that corticofugal fibers terminating in the auditory thalamus and midbrain are mostly ipsilateral. Differently, corticofugal fibers terminating in the cochlear nucleus are bilateral, which fits to the needs of binaural hearing that improves hearing quality. This leads to our hypothesis that corticofugal modulation of initial neural processing of sound information from the contralateral and ipsilateral ears could be equivalent or coordinated at the first sound processing level.

Methodology/Principal Findings

With the focal electrical stimulation of the auditory cortex and single unit recording, this study examined corticofugal modulation of the ipsilateral cochlear nucleus. The same methods and procedures as described in our previous study of corticofugal modulation of contralateral cochlear nucleus were employed simply for comparison. We found that focal electrical stimulation of cortical neurons induced substantial changes in the response magnitude, response latency and receptive field of ipsilateral cochlear nucleus neurons. Cortical stimulation facilitated auditory response and shortened the response latency of physiologically matched neurons whereas it inhibited auditory response and lengthened the response latency of unmatched neurons. Finally, cortical stimulation shifted the best frequencies of cochlear neurons towards those of stimulated cortical neurons.

Conclusion

Our data suggest that cortical neurons enable a high frequency-specific remodelling of sound information processing in the ipsilateral cochlear nucleus in the same manner as that in the contralateral cochlear nucleus.  相似文献   

12.
The unique temporal and spectral properties of chopper neurons in the cochlear nucleus cannot be fully explained by current popular models. A new model of sustained chopper neurons was therefore suggested based on the assumption that chopper neurons receive input both from onset neurons and the auditory nerve (Bahmer and Langner in Biol Cybern 95:4, 2006). As a result of the interaction of broadband input from onset neurons and narrowband input from the auditory nerve, the chopper neurons in our model are characterized by a remarkable combination of sharp frequency tuning to pure tones and faithful periodicity coding. Our simulations show that the width of the spectral integration of the onset neuron is crucial for both the precision of periodicity coding and their resolution of single components of sinusoidally amplitude-modulated sine waves. One may hypothesize, therefore, that it would be an advantage if the hearing system were able to adapt the spectral integration of onset neurons to varying stimulus conditions.  相似文献   

13.
Stellate cells in the cat antero-ventral cochlear nucleus (AVCN) maintain a robust rate-place representation of vowel spectra over a wide range of stimulus levels. This rate-place representation resembles that of low threshold, high spontaneous rate (SR) auditory nerve fibers (ANFs)at low stimulus levels, and that of high threshold, lowmedium SR ANFsat high stimulus levels. One hypothesis accounting for this phenomenon is that AVCN stellate cells selectively process inputs from different SR population of ANFs in a level-dependent fashion. In this paper, we investigate a neural mechanism that can support selective processing of ANF inputs by stellate cells. We study a physiologically detailed compartmental model of stellate cells. The model reproduces PST histograms and rate-versus-level functions measured in real cells. These results indicate that simple and plausible distribution patterns of excitatory and inhibitory inputs within the stellate cell dendritic tree can support level dependent selective processing. Factors affecting selective processing are identified. This study thus represents a first step towards the development of a computational model of the AVCN stellate cell receptive field.  相似文献   

14.
The past 30 years has seen a remarkable development in our understanding of how the auditory system--particularly the peripheral system--processes complex sounds. Perhaps the most significant has been our understanding of the mechanisms underlying auditory frequency selectivity and their importance for normal and impaired auditory processing. Physiologically vulnerable cochlear filtering can account for many aspects of our normal and impaired psychophysical frequency selectivity with important consequences for the perception of complex sounds. For normal hearing, remarkable mechanisms in the organ of Corti, involving enhancement of mechanical tuning (in mammals probably by feedback of electro-mechanically generated energy from the hair cells), produce exquisite tuning, reflected in the tuning properties of cochlear nerve fibres. Recent comparisons of physiological (cochlear nerve) and psychophysical frequency selectivity in the same species indicate that the ear's overall frequency selectivity can be accounted for by this cochlear filtering, at least in bandwidth terms. Because this cochlear filtering is physiologically vulnerable, it deteriorates in deleterious conditions of the cochlea--hypoxia, disease, drugs, noise overexposure, mechanical disturbance--and is reflected in impaired psychophysical frequency selectivity. This is a fundamental feature of sensorineural hearing loss of cochlear origin, and is of diagnostic value. This cochlear filtering, particularly as reflected in the temporal patterns of cochlear fibres to complex sounds, is remarkably robust over a wide range of stimulus levels. Furthermore, cochlear filtering properties are a prime determinant of the 'place' and 'time' coding of frequency at the cochlear nerve level, both of which appear to be involved in pitch perception. The problem of how the place and time coding of complex sounds is effected over the ear's remarkably wide dynamic range is briefly addressed. In the auditory brainstem, particularly the dorsal cochlear nucleus, are inhibitory mechanisms responsible for enhancing the spectral and temporal contrasts in complex sounds. These mechanisms are now being dissected neuropharmacologically. At the cortical level, mechanisms are evident that are capable of abstracting biologically relevant features of complex sounds. Fundamental studies of how the auditory system encodes and processes complex sounds are vital to promising recent applications in the diagnosis and rehabilitation of the hearing impaired.  相似文献   

15.
Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps.  相似文献   

16.
The specific-binding properties of l-[3H]quinuclidinyl benzilate, a muscarinic acetylcholine-receptor antagonist, were investigated in synaptic and other membrane preparations of the guinea pig cochlear nucleus and auditory nerve. Binding parameters for all experiments were consistent with a single binding site with a Hill coefficient of 1.0. The binding of the ligand was specific and of high affinity, with values of KD in the range of 30-80 pM. Bmax was 0.352 +/- 0.023 pmol/mg protein for the dorsal cochlear nucleus and 0.215 +/- 0.011 pmol/mg protein for the ventral cochlear nucleus. The dorsal cochlear nucleus/ventral cochlear nucleus ratio for density of muscarinic receptors (1.6/1.0) was maintained across two different buffer systems, which varied with respect to the inclusion of proteolysis inhibitors. The results for auditory nerve indicated a level of binding much below that of the cochlear nucleus, with Bmax = 0.052 +/- 0.011 pmol/mg protein. The results of specific-binding experiments for l-[3H]quinuclidinyl benzilate support a role for acetylcholine as a neurotransmitter in the cochlear nucleus. The greater density of muscarinic receptors in the dorsal cochlear nucleus may indicate greater cholinergic activity in the dorsal relative to the ventral cochlear nucleus.  相似文献   

17.
猫耳蜗电图中N_2波起源的分析   总被引:4,自引:0,他引:4  
魏保龄  康健  曲非 《生理学报》1986,38(5):535-538
在35只猫进行了耳蜗电图、听觉脑干电反应及耳蜗核局部电位的同时描记,将普鲁卡因或海人酸微量注入耳蜗核内,观察电位的变化,以分析耳蜗电图中N_2 波的起源。实验结果表明:猫的 N_2 波来源于外周第一级神经元冲动的成分和耳蜗核电活动的成分。  相似文献   

18.
Recent findings have pointed out the role of neurotrophic factors in the survival and maintenance of neurons of the auditory system. Basic fibroblast growth factor (bFGF, FGF-2) is a potent neurotrophic molecule whose actions can be seen in the central and peripheral nervous systems. In the present study, FGF-2 immunoreactivity was analyzed in the auditory pathways of the adult rat, employing a well-characterized polyclonal antibody against FGF-2. In the cochlea, FGF-2 immunoreactivity was observed in the inner and outer hair cells of the organ of Corti, spiral ganglion neurons, spiral limbus, and stria vascularis. Stereological methods employing optical fractionator revealed the presence of 84.5, 15, and 0.5% of spiral ganglion neurons possessing FGF-2 immunoreactivity of strong, moderate, and weak intensity, respectively. In the central auditory pathways, FGF-2 immunoreactivity was found in the cytoplasm of the neurons of the cochlear nuclei, trapezoid body nuclei, medial geniculate nucleus, and inferior colliculus. The two-color immunoperoxidase method showed FGF-2 immunoreactivity in the nuclei of astrocytes throughout the central auditory pathway. Computer-assisted microdensitometric image analysis revealed higher levels of specific mean gray values of FGF-2 immunoreactivity in the trapezoid body and ventral cochlear nucleus and also in the spiral ganglion and inner hair cells. Sections incubated with FGF-2 antibody preabsorbed with human recombinant FGF-2 showed no immunoreaction in the majority of the studied regions, exhibiting only a slight immunoreactive product in the hair cells of the organ of Corti. Furthermore, no changes in immunoreactivity were observed in sections incubated with FGF-2 antiserum preincubated with human recombinant acidic FGF (FGF-1). The findings suggest that FGF-2 may exert paracrine and autocrine actions on neurons of the central and peripheral auditory systems and may be of importance in the mechanism of hearing diseases.  相似文献   

19.
A comparative analysis was made of the distribution of vestibular efferent neurons projecting to the saccule and efferent cells sending out axons to the auditory nerve ("cochlear efferent neurons") in the guinea pig, using retrograde horseradish peroxidase axonal transport techniques. Saccular efferent neurons were discovered bilaterally in the subependymal granular layer at the base of the fourth cerebral ventricle and laterally to the facial nerve genu ispsilaterally in the parvocellular reticular nucleus, as well as nuclei of the superior olivary complex: the lateral olivary nucleus and lateral nucleus of the trapezoid body. Cochlear efferent neurons are located ipsilaterally in the pontine reticular caudal nucleus, in the anteroventral cochlear nucleus, and in the lateral and medial olivary nuclei. Neurons were found contralaterally in the medial nucleus of the trapezoid body. It thus emerged that location zones of vestibular saccular efferent neurons and those of cochlear efferent units partially overlapped. The possible involvement of saccular vestibular efferent neurons in the mechanisms of auditory perception is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 657–665, September–October, 1990.  相似文献   

20.
Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号