首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans that modulate the activities of growth factors, chemokines, and coagulation factors regulate in turn the vascular endothelium with respect to processes such as inflammation, hemostasis, and angiogenesis. Endothelial cell-specific molecule-1 is mainly expressed by endothelial cells and regulated by pro-inflammatory cytokines (Lassalle, P., Molet, S., Janin, A., Heyden, J. V., Tavernier, J., Fiers, W., Devos, R., and Tonnel, A. B. (1996) J. Biol. Chem. 271, 20458-20464). We demonstrate that this molecule is secreted as a soluble dermatan sulfate (DS) proteoglycan. This proteoglycan represents the major form either secreted by cell lines or circulating in the human bloodstream. Because this proteoglycan is specifically secreted by endothelial cells, we propose to name it endocan. The glycosaminoglycan component of endocan consists of a single DS chain covalently attached to serine 137. Endocan dose-dependently increased the hepatocyte growth factor/scatter factor (HGF/SF)-mediated proliferation of human embryonic kidney cells, whereas the nonglycanated form of endocan did not. Moreover, DS chains purified from endocan mimicked the endocan-mediated increase of cell proliferation in the presence of HGF/SF. Overall, our results demonstrate that endocan is a novel soluble dermatan sulfate proteoglycan produced by endothelial cells. Endocan regulates HGF/SF-mediated mitogenic activity and may support the function of HGF/SF not only in embryogenesis and tissue repair after injury but also in tumor progression.  相似文献   

2.
It is known that the mammalian brain contains many kinds of proteoglycans, but almost all of them remain to be characterized. In this study, we prepared a monoclonal antibody against a phosphate-buffered saline-soluble brain proteoglycan (MAb 6B4). MAb 6B4 recognized a 600- to 1000-kDa chondroitin sulfate proteoglycan with a 250-kDa core protein (6B4 proteoglycan). The core protein of 6B4 proteoglycan carried the HNK-1 epitope. Immunohistochemical analysis of the adult rat brain indicated that this proteoglycan was expressed on the cell surfaces of a subset of neurons. In the hindbrain, 6B4 proteoglycan was highly expressed on the cerebellar Purkinje cells and Golgi cells, and at particular nuclei including the pontine nuclei and lateral reticular nucleus. Almost all of these nuclei were connected to the cerebellum through the mossy fiber system. A developmental study indicated that the expression of this proteoglycan changed dramatically during the formation of the cerebellar mossy fiber system. The mossy fibers from the pontine nuclei expressed 6B4 proteoglycan transiently from Embryonic Day 20 (E20) to Postnatal Day 30 (P30), during which time the axonal outgrowth and glomerular synapse formation occurred. The Purkinje cells, glomeruli, and Golgi cells began to be stained with MAb 6B4 from P10, P16, and P20, respectively. These expression stages correspond with the onset of their synapse formation. These results suggest that 6B4 proteoglycan is closely involved in the development of the cerebellar mossy fiber system.  相似文献   

3.
We have previously demonstrated that the human placenta contains a uniquely low sulfated extracellular aggrecan family chondroitin sulfate proteoglycan (CSPG). This CSPG is a major receptor for the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in placentas, causing pregnancy-specific malaria. However, it is not known whether such low sulfated CSPGs occur in placentas of other animals and, if so, whether IRBCs bind to those CSPGs. In this study, we show that rat placenta contains a uniquely low sulfated extracellular CSPG bearing chondroitin sulfate (CS) chains, which comprise only approximately 2% 4-sulfated and the remainder nonsulfated disaccharides. Surprisingly, the core protein of the rat placental CSPG, unlike that of the human placental CSPG, is a spongiotrophoblast-specific protein (SSP), which is expressed in a pregnancy stage-dependent manner. The majority of rat placental SSP is present in the CSPG form, and only approximately 10% occurs without CS chain substitution. Of the total SSP-CSPG in rat placenta, approximately 57% is modified with a single CS chain, and approximately 43% carries two CS chains. These data together with the previous finding on human placental CSPG suggest that the expression of low sulfated CSPG is a common feature of animal placentas. Our data also show that the unique species-specific difference in the biology of the rat and human placentas is reflected in the occurrence of completely different CSPG core protein types. Furthermore, the rat SSP-CSPG binds P. falciparum IRBCs in a CS chain-dependent manner. Since IRBCs have been reported to accumulate in the placentas of malaria parasite-infected rodents, our results have important implications for exploiting pregnant rats as a model for studying chondroitin 4-sulfate-based therapeutics for human placental malaria.  相似文献   

4.
Staub E  Hinzmann B  Rosenthal A 《FEBS letters》2002,515(1-3):114-118
Potential contamination of animal-derived collagen with pathogens has led to the demand for safe recombinant sources of this complex molecule. In continuation of our previous work [Ruggiero et al. (2000) FEBS Lett. 469, 132-136], here we show that it is possible to produce recombinant hydroxylated homotrimeric collagen in tobacco plants that are co-transformed with a human type I collagen and a chimeric proline-4-hydroxylase (P4H). This is to our knowledge the first time that transient expression in tobacco was used to improve the quality of a recombinant protein produced in plants through co-expression with an animal cell-derived modifying enzyme. We demonstrated the functionality of the new chimeric P4H and thus improved the thermal stability of recombinant collagen I from plants to 37 degrees C.  相似文献   

5.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

6.
《The Journal of cell biology》1989,109(6):3187-3198
Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were purified from both supernatant and tissue fractions of Reichert's membranes incubated in short-term organ culture in the presence of radiolabel. The resultant affinity-purified proteoglycan samples were examined by gel filtration, SDS-PAGE, and immunoblotting. This proteoglycan is of high molecular weight (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core protein were also recognized by all four mAbs. Indirect immunofluorescence of rat tissue sections stained with these antibodies reveal a widespread distribution of this proteoglycan, localized specifically to Reichert's membrane and nearly all basement membranes of rat tissues. In addition to heparan sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component.  相似文献   

7.
Hydraulic conductivity of chondroitin sulfate proteoglycan solutions   总被引:1,自引:0,他引:1  
The hydraulic conductivity of solutions of Swarm rat chondrosarcoma proteoglycan subunit and of chondroitin 4- and 6-sulfate up to concentrations of 80 mg ml-1 have been measured under physiological conditions using sedimentation velocity and membrane ultrafiltration techniques. This study establishes the very high flow resistance of the proteoglycan and that this resistance is due to its constituent chondroitin sulfate chains. We have also demonstrated little difference in the hydraulic conductivity of chondroitin 4-sulfate as compared to chondroitin 6-sulfate. Studies of hydraulic conductivity of chondroitin sulfate and proteoglycan subunit over a range of salt concentrations demonstrate that the chondroitin sulfates exhibit only a small degree of electrolyte dissipation indicating that their constituent charge groups do not significantly contribute to flow resistance at high mechanical pressures. It appears that the shape and conformation of the polysaccharide backbone and its glycosidic linkages are the factors that primarily govern flow resistance. This is also consistent with the fact that hydraulic conductivity of the proteoglycans and chondroitin sulfates is considerably lower than that of its more charged counterpart heparin but has similar values to hyaluronate. Qualitative agreement between sedimentation analysis and ultrafiltration measurements is also established although the latter technique suffers from not knowing over what distance, adjacent to the membrane, ultrafiltration takes place. It is predicted that the proteoglycans will significantly contribute to flow resistance of cartilagenous tissues which confirms the Maroudas correlation that high proteoglycan concentration in cartilage yields high flow resistance. Further, we establish through a comparison of hydraulic conductivity measurements on hyaluronate, desulfated chondroitin sulfate, chondroitin sulfate, and proteoglycan subunit and osmotic pressure measurements of hyaluronate and proteoglycan that the sulfate groups of the chondroitin sulfate chain play only a small role in the net movement of water relative to the proteoglycan.  相似文献   

8.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In the adult cerebral cortex, there are special CSPG-containing structures known as perineuronal nets (PNNs), which are highly condensed ECM structures. Here, we report a novel CSPG-containing structure distinct from PNNs in the adult mouse cerebral cortex. An anti-chondroitin sulfate antibody CS56 delineated a structure with a unique morphology like a dandelion clock. Accordingly, we named it DAndelion Clock-like Structure (DACS). Immunohistochemical evidence showed that DACSs surrounded a group of NeuN-positive/GABA-negative neurons. At ultrastructural level, CS56-immunoreactivities were localized in the cytoplasm and on the membrane of astrocytes. As the postnatal cerebral cortex matured, DACSs became visible around the end of the critical period. This is the first report demonstrating the presence of an ECM structure DACS composed of CSPGs around a group of cortical neurons in the adult cerebral cortex.  相似文献   

9.
Primary mesenchyme cell migration in the sea urchin embryo is inhibited by sulfate deprivation and exposure to exogenous beta-D-xylosides, two treatments known to disrupt proteoglycan synthesis. We show that in the developing sea urchin, exogenous xyloside affects the synthesis by the primary mesenchyme cells of a very large, cell surface chondroitin sulfate/dermatan sulfate proteoglycan. This proteoglycan is present in a partially purified fraction that restores migratory ability to defective cells in vitro. The integrity of this chondroitin sulfate/dermatan sulfate proteoglycan appears essential for primary mesenchyme cell migration since treatment of actively migrating cells with chondroitinase ABC reversibly inhibited their migration in vitro.  相似文献   

10.
We generated a monoclonal antibody (Mab) against a large chondroitin sulfate proteoglycan (CSPG) isolated from bovine aorta. This Mab (941) immunoprecipitates a CSPG synthesized by cultured monkey arterial smooth muscle cells. The immunoprecipitated CSPG is totally susceptible to chondroitinase ABC digestion and possesses a core glycoprotein of Mr approximately 400-500 KD. By use of immunofluorescence light microscopy and immunogold electron microscopy, the PG recognized by this Mab was shown to be deposited in the extracellular matrix of monkey arterial smooth muscle cell cultures in clusters which were not part of other fibrous matrix components and not associated with the cell's plasma membrane. With similar immunolocalization techniques, the CSPG antigen was found enriched in the intima and present in the medial portions of normal blood vessels, as well as in the interstitial matrix of thickened intimal lesions of atherosclerotic vessels. Immunoelectron microscopy revealed that this CSPG was confined principally to the space within the extracellular matrix not occupied by other matrix components, such as collagen and elastic fibers. These results indicate that this particular proteoglycan has a specific but restricted distribution in the extracellular matrix of arterial tissue.  相似文献   

11.
12.
We have used an antibody raised against the bovine nasal cartilage proteoglycan chondroitin sulfate (CS) digested with chondroitinase ABC (anti-CS serum) to stain cerebellar glial cells maintained in culture. In cultures grown in the presence of serum, the antibody stained a subclass of GFAP+ astrocytes which we have previously shown to selectively bind the monoclonal antibodies A2B5 and LB1. Also the direct bipotential precursors of these cells, capable of differentiating into GFAP+ astrocytes or into Gal-C+, O1+ oligodendrocytes depending on the culture conditions, were stained, but stopped to produce CS when they differentiated into oligodendrocytes.  相似文献   

13.
Cellular distribution of the Ia-associated chondroitin sulfate proteoglycan   总被引:1,自引:0,他引:1  
The Ia-associated chondroitin sulfate proteoglycan (CSPG) found in anti-Ia and anti-invariant chain immunoprecipitates was originally detected in [35S] sulfate-labeled extracts derived from unseparated populations of splenocytes. To determine whether the CSPG was produced only by a subpopulation of spleen cells, we examined various cell populations for their ability to produce the CSPG. We found that B lymphocytes were the predominant source of CSPG in the spleen. The synthesis of the Ia-associated CSPG in spleen cell cultures was not diminished by the depletion of T cells or adherent cells. Moreover, the CSPG was readily detected in lysates derived from the Lyb-5- B cell subsets of xid mice, splenocytes from athymic (nude) mice, and in vitro B cell hybridomas. Peritoneal exudate macrophages from indomethacin-treated mice were also found to be capable of producing the CSPG. In all of the studies performed to date, no dissociation of the synthesis of the CSPG from the synthesis of Ia was observed in any cell type. We therefore tentatively conclude that all cells that synthesize conventional Ia molecules also synthesize the CSPG. Finally, we have been able to use anion exchange chromatography to prepare proteoglycan-enriched fractions to isolate the CSPG. This purification step has allowed us to convincingly demonstrate that the CSPG can be labeled with amino acids, and is a necessary step for detecting amino acid-labeled CSPG. This purification step method was used in the accompanying report to begin a quantitative examination of the Ia/CSPG complex, to monitor the kinetics of CSPG synthesis and association with Ia, and to determine its subcellular localization.  相似文献   

14.
15.
Human peritoneal macrophages were cultured in vitro and labeled with [35S]-sulfate. Both on day 1 and day 6 in culture the cells were found to synthesize exclusively chondroitin sulfate proteoglycan, the main part (70%) being associated with the medium after a 20 hour pulse. The glycosaminoglycan chains were found to be oversulfated both after 1 and 6 days in culture, due to the presence of disulfated disaccharide units.  相似文献   

16.
Deglycosylation of chondroitin sulfate proteoglycan and derived peptides   总被引:1,自引:0,他引:1  
In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [3H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight (approximately 370,000). Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors (apparent Mr approximately 360,000) suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions (the chondroitin sulfate rich regions of the proteoglycan) were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose acceptor activity comparable to the intact core protein.  相似文献   

17.
A high molecular weight chondroitin sulfate proteoglycan (Mr 240,000) is released from platelet surface during aggregation induced by several pharmacological agents. Some details on the structure of this compound are reported. beta-Elimination with alkali and borohydride produces chondroitin sulfate chains with a molecular weight of 40,000. The combined results indicate a proteoglycan molecule containing 5-6 chondroitin sulfate chains and a protein core rich in serine and glycine residues. Degradation with chondroitinase AC shows that a 4-sulfated disaccharide is the only disaccharide released from this chondroitin sulfate, characterizing it as a chondroitin 4-sulfate homopolymer. It is shown that this proteoglycan inhibits the aggregation of platelets induced by ADP. Analysis of the sulfated glycosaminoglycans not released during aggregation revealed the presence of a heparan sulfate in the platelets. Degradation by heparitinases I and II yielded the four disaccharide units of heparan sulfates: N,O-disulfated disaccharide, N-sulfated disaccharide, N-acetylated 6-sulfated disaccharide, and N-acetylated disaccharide. The possible role of the sulfated glycosaminoglycans on cell-cell interaction is discussed in view of the present findings.  相似文献   

18.
Knox S  Fosang AJ  Last K  Melrose J  Whitelock J 《FEBS letters》2005,579(22):5019-5023
Perlecan is a multidomain proteoglycan, usually substituted with heparan sulphate (HS), and sometimes substituted with both HS and chondroitin sulphate (CS). In this paper, we describe perlecan purified from HEK-293 cells substituted with HS, CS and keratan sulphate (KS). KS substitution was confirmed by immunoreactivity with antibody 5D4, sensitivity to keratanase treatment, and fluorophore-assisted carbohydrate electrophoresis. HEK-293 perlecan failed to promote FGF-dependent cell growth in an in vitro assay. This study is the first to report perlecan containing KS, and makes perlecan one of only a very few proteoglycans substituted with three distinct types of glycosaminoglycan chains.  相似文献   

19.
《The Journal of cell biology》1990,111(6):3177-3188
The NG2 chondroitin sulfate proteoglycan is a membrane-associated molecule of approximately 500 kD with a core glycoprotein of 300 kD. Both the complete proteoglycan and a smaller quantity of the 300-kD core are immunoprecipitable with polyclonal and monoclonal antibodies against purified NG2. From some cell lines, the antibodies coprecipitate NG2 and type VI collagen, the latter appearing on SDS- PAGE as components of 140 and 250 kD under reducing conditions. The immunoprecipitation of type VI collagen does not seem to be due to recognition of the collagen by the antibodies, but rather to binding of the collagen to NG2. Studies on the NG2-type VI collagen complex suggest that binding between the two molecules is mediated by protein- protein interactions rather than by ionic interactions involving the glycosaminoglycans. Immunofluorescence double labeling in frozen sections of embryonic rat shows that NG2 and type VI collagen are colocalized in structures such as the intervertebral discs and arteries of the spinal column. In vitro the two molecules are highly colocalized on the surface of several cell lines. Treatment of these cells resulting in a change in the distribution of NG2 on the cell surface also causes a parallel change in type VI collagen distribution. Our results suggest that cell surface NG2 may mediate cellular interactions with the extracellular matrix by binding to type VI collagen.  相似文献   

20.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号