首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization of membrane proteins remains a significant challenge. For proteins resistant to the traditional approach of directly crystallizing from detergents, lipidic phase crystallization can be a powerful tool. Bicelles are an excellent medium for crystallizing membrane proteins in a lipidic environment. They can be described as bilayer discs formed by the mixture of a long-chain phospholipid and an amphiphile in an aqueous medium. Membrane proteins can be readily reconstituted into bicelles, where they are maintained in a native-like bilayer environment. Importantly, membrane proteins have been shown to be fully functional in bicelles under physiological conditions. Protein-bicelle mixtures can be manipulated with almost the same ease as detergent-solubilized membrane proteins, making bicelles compatible with standard equipment including high-throughput crystallization robots. A number of membrane proteins have now been successfully crystallized using the bicelle method, including bacteriorhodopsin, β2 adrenergic receptor, voltage-dependent anion channel, xanthorhodopsin and rhomboid protease. Because of the success with a variety of membrane proteins and the ease of implementation, bicelles should be a part of every membrane protein crystallographer's arsenal.  相似文献   

2.
α-Helical membrane proteins (MPs) are the targets for many pharmaceutical drugs and play important roles in human physiology. In recent years, significant progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck in MP crystallography still remains, namely, the identification of conditions that give crystals that are suitable for structural determination. In 2008, we undertook an analysis of the crystallization conditions for 121 α-helical MPs to design a rationalized sparse matrix crystallization screen, MemGold. We now report an updated analysis that includes a further 133 conditions. The results reveal the current trends in α-helical MP crystallization with notable differences since 2008. The updated information has been used to design new crystallization and additive screens that should prove useful for both initial crystallization scouting and subsequent crystal optimization.  相似文献   

3.
Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called ‘bicelles’ that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14–18 carbons) and short chain phospholipids (6–8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural ‘molecular goniometer’ for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.  相似文献   

4.
The lipidic cubic phase (LCP) has repeatedly proven to serve as a successful membrane-mimetic matrix for a variety of difficult-to-crystallize membrane proteins. While monoolein has been the predominant lipid of choice, there is a growing need for the characterization and use of other LCP host lipids, allowing exploration of a range of structural parameters such as bilayer thickness and curvature for optimal insertion, stability and crystallogenesis of membrane proteins. Here, we describe the development of a high-throughput (HT) pipeline to employ small angle X-ray scattering (SAXS) - the most direct technique to identify lipid mesophases and measure their structural parameters - to interrogate rapidly a large number of lipid samples under a variety of conditions, similar to those encountered during crystallization. Leveraging the identical setup format for LCP crystallization trials, this method allows the quickly assessment of lipid matrices for their utility in membrane protein crystallization, and could inform the tailoring of lipid and precipitant conditions to overcome specific crystallization challenges. As proof of concept, we present HT LCP-SAXS analysis of lipid samples made of monoolein with and without cholesterol, and of monovaccenin, equilibrated with solutions used for crystallization trials and LCP fluorescence recovery after photobleaching (FRAP) experiments.  相似文献   

5.
Opsin stability and folding: modulation by phospholipid bicelles   总被引:1,自引:0,他引:1  
Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-α-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to  70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.  相似文献   

6.
Obtaining crystals of membrane proteins that diffract to high resolution remains a major stumbling block in structure determination. Here we present a new method for crystallizing membrane proteins from a bicelle forming lipid/detergent mixture. The method is flexible and simple to use. As a test case, bacteriorhodopsin (bR) from Halobacterium salinarum was crystallized from a bicellar solution, yielding a new bR crystal form. The crystals belong to space group P2(1) with unit cell dimensions of a=45.0 A, b=108.9 A, c=55.9 A, beta=113.58 degrees and a dimeric asymmetric unit. The structure was solved by molecular replacement and refined at 2.0 A resolution. In all previous bR structures the protein is organized as a parallel trimer, but in the crystals grown from bicelles, the individual bR subunits are arranged in an antiparallel fashion.  相似文献   

7.
Bicelles are bilayered discoidal lipid-detergent assemblies which are useful as model membranes. To date, there has been no direct demonstration of functional viability for an integral membrane protein reconstituted into bicelles. In this contribution, the catalytic activity of diacylglycerol kinase (DAGK) was measured following reconstitution into several different bicelle systems and compared to activities measured in traditional mixed micelles and vesicles. For the most optimal bicelle systems tested, DAGK activities approached those observed in mixed micelles or vesicles. For some other bicellar mixtures tested, activities were much lower, with steady-state kinetic data indicating reduced V(max) rather than perturbations in substrate K(m). Catalytically, DAGK showed a strong preference for bicelles containing 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) as the detergentcomponent relative to short-chained phosphatidylcholine.DAGK also exhibited a preference for dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine bicelles relative to those of dilauroylphosphatidylcholine.  相似文献   

8.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   

9.
Despite recent technological advances in heterologous expression, stabilization and crystallization of membrane proteins (MPs), their structural studies remain difficult and require new transformative approaches. During the past two years, crystallization in lipidic cubic phase (LCP) has started gaining a widespread acceptance, owing to the spectacular success in high-resolution structure determination of G protein-coupled receptors (GPCRs) and to the introduction of commercial instrumentation, tools and protocols. The recent appearance of X-ray free-electron lasers (XFELs) has enabled structure determination from substantially smaller crystals than previously possible with minimal effects of radiation damage, offering new exciting opportunities in structural biology. The unique properties of LCP material have been exploited to develop special protocols and devices that have established a new method of serial femtosecond crystallography of MPs in LCP (LCP-SFX). In this method, microcrystals are generated in LCP and streamed continuously inside the same media across the intersection with a pulsed XFEL beam at a flow rate that can be adjusted to minimize sample consumption. Pioneering studies that yielded the first room temperature GPCR structures, using a few hundred micrograms of purified protein, validate the LCP-SFX approach and make it attractive for structure determination of difficult-to-crystallize MPs and their complexes with interacting partners. Together with the potential of femtosecond data acquisition to interrogate unstable intermediate functional states of MPs, LCP-SFX holds promise to advance our understanding of this biomedically important class of proteins.  相似文献   

10.
Amphipols (APols) have become important tools for the stabilization, folding, and in vitro structural and functional studies of membrane proteins (MPs). Direct crystallization of MPs solubilized in APols would be of high importance for structural biology. However, despite considerable efforts, it is still not clear whether MP/APol complexes can form well-ordered crystals suitable for X-ray crystallography. In the present work, we show that an APol-trapped MP can be crystallized in meso. Bacteriorhodopsin (BR) trapped by APol A8-35 was mixed with a lipidic mesophase, and crystallization was induced by adding a precipitant. The crystals diffract beyond 2 Å. The structure of BR was solved to 2 Å and found to be indistinguishable from previous structures obtained after transfer from detergent solutions. We suggest the proposed protocol of in meso crystallization to be generally applicable to APol-trapped MPs.  相似文献   

11.
We have investigated the membrane interactions and dynamics of a 21-mer cytotoxic model peptide that acts as an ion channel by solid-state NMR spectroscopy. To shed light on its mechanism of membrane perturbation, 31P and 2H NMR experiments were performed on 21-mer peptide-containing bicelles. 31P NMR results indicate that the 21-mer peptide stabilizes the bicelle structure and orientation in the magnetic field and perturbs the lipid polar head group conformation. On the other hand, 2H NMR spectra reveal that the 21-mer peptide orders the lipid acyl chains upon binding. 15N NMR experiments performed in DMPC bilayers stacked between glass plates also reveal that the 21-mer peptide remains at the bilayer surface. 15N NMR experiments in perpendicular DMPC bicelles indicate that the 21-mer peptide does not show a circular orientational distribution in the bicelle planar region. Finally, 13C NMR experiments were used to study the 21-mer peptide dynamics in DMPC multilamellar vesicles. By analyzing the 13CO spinning sidebands, the results show that the 21-mer peptide is immobilized upon membrane binding. In light of these results, we propose a model of membrane interaction for the 21-mer peptide where it lies at the bilayer surface and perturbs the lipid head group conformation.  相似文献   

12.
The interaction between the secondary structure elements is the key process, determining the spatial structure and activity of a membrane protein. Transmembrane (TM) helix-helix interaction is known to be especially important for the function of so-called type I or bitopic membrane proteins. In the present work, we present the approach to study the helix-helix interaction in the TM domains of membrane proteins in various lipid environment using solution NMR spectroscopy and phospholipid bicelles. The technique is based on the ability of bicelles to form particles with the size, depending on the lipid/detergent ratio. To implement the approach, we report the experimental parameters of “ideal bicelle” models for four kinds of zwitterionic phospholipids, which can be also used in other structural studies. We show that size of bicelles and type of the rim-forming detergent do not affect substantially the spatial structure and stability of the model TM dimer. On the other hand, the effect of bilayer thickness on the free energy of the dimer is dramatic, while the structure of the protein is unchanged in various lipids with fatty chains having a length from 12 to 18 carbon atoms. The obtained data is analyzed using the computer simulations to find the physical origin of the observed effects.  相似文献   

13.
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase.  相似文献   

14.
Integrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles. In bicelles, a 30-residue linear alpha-helix, encompassing residues I693-H772, is adopted, of which I693-I721 appear embedded in the hydrophobic bicelle core. This relatively long transmembrane helix implies a pronounced helix tilt within a typical lipid bilayer, which facilitates the snorkeling of K716's charged side chain out of the lipid core while simultaneously immersing hydrophobic L717-I721 in the membrane. A shortening of bicelle lipid hydrocarbon tails does not lead to the transfer of L717-I721 into the aqueous phase, suggesting that the reported embedding represents the preferred beta3 state. The nature of the lipid headgroup affected only the intracellular part of the transmembrane helix, indicating that an asymmetric lipid distribution is not required for studying the beta3 transmembrane segment. In the micelle, residues L717-I721 are also embedded but deviate from linear alpha-helical conformation in contrast to I693-K716, which closely resemble the bicelle structure.  相似文献   

15.
A mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short-chain detergent n-dodecylphosphocholine (DPC) is introduced here as a new membrane-mimetic bicelle system for solid-state NMR structure analysis of membrane proteins in oriented samples. Magnetically aligned DMPC/DPC bicelles are stable over a range of concentrations, with an optimum lipid ratio of q=3:1, and they can be flipped with lanthanide ions. The advantage of DMPC/DPC over established bicelle systems lies in the possibility to use one and the same detergent for purification and NMR analysis of the membrane protein, without any need for detergent exchange. Furthermore, the same batch of protein can be studied in both micelles and bicelles, using liquid-state and solid-state NMR, respectively. The applicability of the DMPC/DPC bicelles is demonstrated here with the (15)N-labeled transmembrane protein TatA.  相似文献   

16.
Lipidic cubic phase (LCP) is a membrane-mimetic matrix suitable for stabilization and crystallization of membrane proteins in lipidic environment. LCP technologies, however, have not been fully embraced by the membrane protein structural biology community, primarily because of the difficulties associated with handling viscous materials. Recent developments of pre-crystallization assays and improvements in crystal imaging, successes in obtaining high resolution structures of G protein-coupled receptors (GPCRs), and commercial availability of LCP tools and instruments are beginning to attract structural biologists to integrate LCP technologies in their research. This wider acceptance should translate to an increased number of otherwise difficult-to-crystallize membrane protein structures, shedding light on their functional mechanisms and on structural details of lipid-protein interactions.  相似文献   

17.
Crystallizing membrane proteins remains a challenging endeavor despite the increasing number of membrane protein structures solved by X-ray crystallography. The critical factors in determining the success of the crystallization experiments are the purification and preparation of membrane protein samples. Moreover, there is the added complication that the crystallization conditions must be optimized for use in the presence of detergents although the methods used to crystallize most membrane proteins are, in essence, straightforward applications of standard methodologies for soluble protein crystallization. The roles that detergents play in the stability and aggregation of membrane proteins as well as the colloidal properties of the protein-detergent complexes need to be appreciated and controlledbefore and during the crystallization trials. All X-ray quality crystals of membrane proteins were grown from preparations of detergent-solubilized protein, where the heterogeneous natural lipids from the membrane have been replaced by ahomogeneous detergent environment. It is the preparation of such monodisperse, isotropic solutions of membrane proteins that has allowed the successful application of the standard crystallization methods routinely used on soluble proteins. In this review, the issues of protein purification and sample preparation are addressed as well as the new refinements in crystallization methodologies for membrane proteins. How the physical behavior of the detergent, in the form of micelles or protein-detergent aggregates, affects crystallization and the adaptation of published protocols to new membrane protein systems are also addressed. The general conclusion is that many integral membrane proteins could be crystallized if pure and monodisperse preparations in a suitable detergent system can be prepared.In memory of Glenn D. Garavito.  相似文献   

18.
With a view to deciphering aspects of the mechanism of membrane protein crystallization in lipidic mesophases (in meso crystallization), an examination of the structure and disposition of the pore-forming peptide, gramicidin, in the lipidic cubic phase was undertaken. At its simplest, the cubic phase consists of lipid and water in the form of a molecular 'sponge.' The lipid exists as a continuous, highly curved bilayer that divides the aqueous component into two interpenetrating but non-contacting channels. In this study, we show that gramicidin reconstitutes into the lipid bilayer of the cubic phase and that it adopts the channel, or helical dimer, conformation therein. Fluorescence quenching with brominated lipid was used to establish the bilayer location of the peptide. Electronic absorption and emission spectroscopies corroborated this finding. Peptide conformation in the cubic phase membrane was determined by circular dichroism. The identity and microstructure of the mesophases, and their capacity to accommodate gramicidin and other system components (sodium dodecyl sulfate, trifluoroethanol), was established by small-angle X-ray diffraction. Beyond a limiting concentration, gramicidin destabilized the cubic phase in favor of the inverted hexagonal phase. While gramicidin remained bilayer bound as membrane thickness changed, its conformation responded to the degree of bilayer mismatch with the hydrophobic surface of the peptide. These findings support the hypothesis that reconstitution into the lipid bilayer is an integral part of the in meso crystallization process as applied to membrane proteins. They also suggest ways for improving the process of membrane protein crystallogenesis.  相似文献   

19.
Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix–helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of − 4.61 ± 0.04 kcal/mol at bicelle conditions where the sampling of random helix–helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of > 1 kcal/mol was obtained from helix–helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500 ± 100 s− 1 and 2.1 ± 0.1 s− 1, respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins.  相似文献   

20.
Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号