首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ∼2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes.  相似文献   

3.
4.
The highly conserved, ubiquitously expressed, zinc finger protein CTCF is involved in enhancer blocking, a mechanism crucial for shielding genes from illegitimate enhancer effects. Interestingly, CTCF-binding sites are often flanked by thyroid hormone response elements (TREs), as at the chicken lysozyme upstream silencer. Here we identify a similar composite site positioned upstream of the human c-myc gene. For both elements, we demonstrate that thyroid hormone abrogates enhancer blocking. Relief of enhancer blocking occurs even though CTCF remains bound to the lysozyme chromatin. Furthermore, chromatin immunoprecipitation analysis of the lysozyme upstream region revealed that histone H4 is acetylated at the CTCF-binding site. Loss of enhancer blocking by the addition of T3 led to increased histone acetylation, not only at the CTCF site, but also at the enhancer and the promoter. Thus, when TREs are adjacent to CTCF-binding sites, thyroid hormone can regulate enhancer blocking, thereby providing a new property for what was previously thought to be constitutive enhancer shielding by CTCF.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A C Bell  A G West  G Felsenfeld 《Cell》1999,98(3):387-396
An insulator is a DNA sequence that can act as a barrier to the influences of neighboring cis-acting elements, preventing gene activation, for example, when located between an enhancer and a promoter. We have identified a 42 bp fragment of the chicken beta-globin insulator that is both necessary and sufficient for enhancer blocking activity in human cells. We show that this sequence is the binding site for CTCF, a previously identified eleven-zinc finger DNA-binding protein that is highly conserved in vertebrates. CTCF sites are present in all of the vertebrate enhancer-blocking elements we have examined. We suggest that directional enhancer blocking by CTCF is a conserved component of gene regulation in vertebrates.  相似文献   

12.
13.
14.
15.
16.
17.
At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.  相似文献   

18.
19.
20.
In every organism, GTP-binding proteins control many aspects of cell signaling. Here, we examine in silico several GTPase families from the Strongylocentrotus purpuratus genome: the monomeric Ras superfamily, the heterotrimeric G proteins, the dynamin superfamily, the SRP/SR family, and the "protein biosynthesis" translational GTPases. Identified were 174 GTPases, of which over 90% are expressed in the embryo as shown by tiling array and expressed sequence tag data. Phylogenomic comparisons restricted to Drosophila, Ciona, and humans (protostomes, urochordates, and vertebrates, respectively) revealed both common and unique elements in the expected composition of these families. Galpha and dynamin families contain vertebrate expansions, consistent with whole genome duplications, whereas SRP/SR and translational GTPases are highly conserved. Unexpectedly, Ras superfamily analyses revealed several large (5+) lineage-specific expansions in the sea urchin. For Rho, Rab, Arf, and Ras subfamilies, comparing total human gene numbers to the number of sea urchin genes with vertebrate orthologs suggests reduced genomic complexity in the sea urchin. However, gene duplications in the sea urchin increase overall numbers such that total sea urchin gene numbers approximate vertebrate gene numbers for each monomeric GTPase family. These findings suggest that lineage-specific expansions may be an important component of genomic evolution in signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号