首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation, is caused by defects in the ATP Binding Cassette Subfamily D Member 1 (ABCD1) gene. X-ALD patients may be asymptomatic or present with several clinical phenotypes varying from severe to mild, severe cerebral adrenoleuko-dystrophy to mild adrenomyeloneuropathy (AMN). Although most female heterozygotes present with AMN-like symptoms after 60 years of age, occasional cases of females with the cerebral form have been reported. Phenotypic variability has been described within the same kindreds and even among monozygotic twins. There is no association between the nature of ABCD1 mutation and the clinical phenotypes, and the molecular basis of phenotypic variability in X-ALD is yet to be resolved. Various genetic, epigenetic, and environmental influences are speculated to modify the disease onset and severity. In this review, we summarize the observations made in various studies investigating the potential modifying factors regulating the clinical manifestation of X-ALD, which could help understand the pathogenesis of the disease and develop suitable therapeutic strategies.  相似文献   

2.
X-linked adrenoleukodystrophy (ALD) is an inherited peroxisomal disorder characterized by progressive neurological dysfunction, occasionally associated with adrenal insufficiency. The clinical thenotypes of ALD are quite variable, and include childhood ALD, adult-onset ALD, adrenomyeloneuropathy, and Addison's disease only. Although the causative gene for ALD has been identified, the physiological role of the gene product remains to be clarified. Despite many mutations having been identified in patients with these clinical phenotypes, the genotype-phenotype correlations have not been clarified. The authors investigated genotype-phenotype correlatons in ALD by analyses on 29 unrelated Japanese patients with ALD and by a review of the literature. All the phenotypes were associated with mutations leading to protein truncation, as well as those resulting in subtle amino acid changes. Furthermore, there were no differences in phenotypic expression among the natures of the subtle amino acid changes. All these data indicate that no obvious correlations exist between the phenotypes of ALD patients and their geneotypes, suggesting that other genetic or environmental factors may also be involved in determining phenotypic expression in ALD.  相似文献   

3.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder with impaired very-long-chain fatty acid (VLCFA) metabolism that produces a neurological disease with significant variability of clinical phenotypes even within kindred. The two most common forms are the cerebral form (CALD) with an important inflammatory reaction at the active edge of demyelinating lesions, resembling some aspects of multiple sclerosis pathology, and adrenomyeloneuropathy (AMN), which involves the spinal cord and in which the inflammatory reaction is mild or absent. One hypothesis is that the phenotypic variability is related to T cell-mediated immune mechanisms playing a primary role in the demyelinating pathogenic process of CALD. The present study aims to test the hypothesis that CSF of patients with the CALD form contains highly restricted T cell populations. The variable regions of the T cell receptor beta chains (TCR Vbeta) were studied in CSF from 29 ALD patients with different phenotypes. RNA was extracted and cDNA synthesized from CSF lymphocytes; TCR Vbeta gene segments were amplified from the cDNA by polymerase chain reaction (PCR) using 20 family-specific primers. PCR products were analyzed by Southern blot. Some amplified Vbeta products were sequenced. The majority of ALD patients (21/29), whatever their phenotype, exhibited oligoclonal T cell expansion. However the overexpression of some TCR Vbeta families was heterogeneous among the different patients without any preponderance of specific Vbeta families or any clustering according to clinical phenotype. In particular a dominant TCR Vbeta utilization was not found in patients with CALD.  相似文献   

4.
Park JA  Jun KR  Han SH  Kim GH  Yoo HW  Hur YJ 《Gene》2012,498(1):131-133
X-linked adrenoleukodystrophy (ALD; MIM #300100) is a neurodegenerative disorder caused by mutations in the ABCD1 adrenoleukodystrophy protein gene. The ABCD1 gene mutations have been reported by laboratories in China and Japan, but not in Korea. This case report describes a Korean boy diagnosed with X-ALD. Direct sequencing for the ABCD1 gene in this boy and his mother detected Tyr620His missense mutation, caused by cDNA nucleotide change 1858 T>C in exon 8 (c.1858T>C). This missense variant was novel and predicted to be possibly damaging by the PolyPhen and SIFT prediction software. Moreover, this is the first report in Korean.  相似文献   

5.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

6.
7.
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy   总被引:5,自引:0,他引:5  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.  相似文献   

8.
Altered expression of ALDP in X-linked adrenoleukodystrophy.   总被引:7,自引:2,他引:7       下载免费PDF全文
X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status.  相似文献   

9.
The neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD) is caused by ABCD1 mutations and characterized by very long-chain fatty acid (VLCFA) accumulation. Cholesterol-lowering normalized VLCFA in fibroblasts and plasma of X-ALD patients. We show that in cultured cells, cholesterol-loading induces ABCD1. In X-ALD mice, plasma cholesterol is elevated and not further increasable by cholesterol-feeding, whereas hepatic HMG-CoA reductase and Abcd2 are downregulated. Upon cholesterol modulation, brain VLCFA increased in X-ALD mice, but decreased in controls. In murine X-ALD fibroblasts, cholesterol-lowering did not normalize VLCFA. Thus, ALDP-deficiency and VLCFA are linked to cholesterol but species differences complicate evaluating cholesterol-lowering drugs in X-ALD mice.  相似文献   

10.
Should be considered as equal first author  相似文献   

11.
X-linked adrenoleukodystrophy (X-ALD) is a clinically heterogeneous disorder ranging from the severe childhood cerebral form to asymptomatic persons. The overall incidence is 1:16,800 including hemizygotes as well as heterozygotes. The principal molecular defect is due to inborn mutations in the ABCD1 gene encoding the adrenoleukodystrophy protein (ALDP), a transporter in the peroxisome membrane. ALDP is involved in the transport of substrates from the cytoplasm into the peroxisomal lumen. ALDP defects lead to characteristic accumulation of saturated very long-chain fatty acids, the diagnostic disease marker. The pathogenesis is unclear. Different molecular mechanisms seem to induce inflammatory demyelination, neurodegeneration and adrenocortical insufficiency involving the primary ABCD1 defect, environmental factors and modifier genes. Important information has been derived from the X-ALD mouse models; species differences however complicate the interpretation of results. So far, bone marrow transplantation is the only effective long-term treatment for childhood cerebral X-ALD, however, only when performed at an early-stage of disease. Urgently needed novel therapeutic strategies are under consideration ranging from dietary approaches to gene therapy.  相似文献   

12.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder resulting from mutations within the ABCD1 gene. Adrenomyeloneuropathy (AMN) and childhood cerebral ALD (CCALD) are most common phenotypes in the Western ALD patients. Here we performed mutation analysis of ABCD1 in 10 Chinese ALD families and identified 8 mutations, including one novel deletion (c.1477_1488 + 11del23) and 7 known mutations. Mutations c.1772G>A and c.1816T>C were first reported in the Chinese patients. Mutations c.1661G>A and c.1679C>T were demonstrated to be de novo mutations. The dinucleotide deletion 1415_16delAG, described as a mutational hotspot in different ethnic groups, was identified in two families. In addition, we performed a retrospective nation-wide mutation study of X-linked ALD in China based on a literature review. The retrospective study further confirmed the hypothesis that exon 6 is a potential mutation cluster region in the Asian populations. Furthermore, it suggested that CCALD is the most common phenotype in China.  相似文献   

13.
Summary We have performed linkage analysis with the DNA markers DXS52 and the clotting factor VIII gene (F8C), in several large families with X-linked adrenoleukodystrophy (ALD). The tight linkage to DXS52 could be extended giving a maximal LOD score of 22.5 at 1 cM. F8C was also tightly linked to ALD with a maximal LOD score of 7.8 without recombination. Multipoint linkage analysis with the markers DXS304, DXS52, and F8C indicated that both the gene for ALD and for F8C are distal to DXS52. In four patients with ALD, no major structural rearrangement in the Xqter region was observed; in particular, there were no abnormalities in the vision blindness genes. DNA analysis appeared to be of use in determination of the carrier status of females at risk, for the determination of the origin of the mutation in a particular family, and for prenatal diagnosis.  相似文献   

14.
We have developed an algorithm that predicted 11,265 potentially polymorphic tandem repeats within transcribed sequences. We estimate that 22% (2,207/9,717) of the annotated clusters within UniGene contain at least one potentially polymorphic locus. Our predictions were tested by allelotyping a panel of approximately 30 individuals for 5% of these regions, confirming polymorphism for more than half the loci tested. Our study indicates that tandem-repeat polymorphisms in genes are more common than is generally believed. Approximately 8% of these loci are within coding sequences and, if polymorphic, would result in frameshifts. Our catalogue of putative polymorphic repeats within transcribed sequences comprises a large set of potentially phenotypic or disease-causing loci. In addition, from the anomalous character of the repetitive sequences within unannotated clusters, we also conclude that the UniGene cluster count substantially overestimates the number of genes in the human genome. We hypothesize that polymorphisms in repeated sequences occur with some baseline distribution, on the basis of repeat homogeneity, size, and sequence composition, and that deviations from that distribution are indicative of the nature of selection pressure at that locus. We find evidence of selective maintenance of the ability of some genes to respond very rapidly, perhaps even on intragenerational timescales, to fluctuating selective pressures.  相似文献   

15.
X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by elevated levels of saturated very long-chain fatty acids (VLCFAs) in plasma and tissues. In X-ALD, peroxisomal very-long-chain acyl-CoA synthetase (VLCS) fails to activate VLCFAs, preventing their degradation via β-oxidation. However, the product of the defective XALD gene (ALDP) is not a VLCS, but rather a peroxisomal membrane protein (PMP). Disruption of either or both of two yeast PMP genes related to the XALD gene did not produce a biochemical phenotype resembling that found in X-ALD fibroblasts. The authors identified a candidate yeast VLCS gene (the FAT1 locus) by its homology to rat liver VLCS. Disruption of this gene decreased VLCS activity, but had no effect on long-chain acyl-CoA synthetase activity. In FAT1-disruption strains, VLCS activity was reduced to 30–40% of wild-type in both a microsome-rich 27,000g supernatant fraction and a peroxisome- and mitochondria-rich pellet fraction of yeast spheroplast homogenates. Separation of the latter organelles by density gradient centrifugation revealed that VLCS activity was peroxisomal and not mitochondrial. VLCS gene-disruption strains had increased cellular VLCFA levels, compared to wild-type yeast. The extent of both the decrease in peroxisomal VLCS activity and the VLCFA accumulation in this yeast model resembles that observed in cells from X-ALD patients. Characterization of the gene(s) responsible for the residual peroxisomal VLCS activity may suggest new therapeutic approaches in X-ALD.  相似文献   

16.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect.  相似文献   

17.
X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder characterized by accumulation of very-long-chain (VLC) fatty acids, which induces inflammatory disease and alterations in cellular redox, both of which are reported to play a role in the pathogenesis of the severe form of the disease (childhood cerebral ALD). While the mutation defect in ABCD1 gene is common to all forms of X-ALD it fails to account for the spectrum of phenotypic variability seen in X-ALD patients, strongly suggesting a role for as yet unidentified modifier gene(s). Here we report, for the first time, loss of AMP-activated protein kinase alpha1 (AMPKα1) in patient-derived fibroblasts and lymphocytes of the severe cerebral form of X-ALD (ALD), and not in the milder adrenomyeloneuropathy (AMN) form. Decrease in AMPK was observed at both protein and mRNA levels. AMPK loss in ALD patient-derived fibroblasts was associated with increased ubiquitination. Using the Seahorse Bioscience XFe96 Flux Analyzer for measuring the mitochondrial oxygen consumption and extracellular acidification rate we show that ALD patient-derived fibroblasts have a significantly lower “metabolic state” than AMN fibroblasts. Unstimulated ALD patient-derived lymphocytes had significantly higher proinflammatory gene expression. Selective AMPK loss represents a novel physiopathogenic factor in X-ALD disease mechanism. Strategies aimed at upregulating/recovering AMPK levels might have beneficial therapeutic effects in X-ALD.  相似文献   

18.
19.
X-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegenerative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD.  相似文献   

20.
X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disease. The two main clinical phenotypes of X-ALD are adrenomyeloneuropathy (AMN) and inflammatory cerebral ALD that manifests either in children or more rarely in adults. About 65% of heterozygote females develop symptoms by the age of 60years. Mutations in the ABCD1 gene affect the function of the encoded protein ALDP, an ATP-binding-cassette (ABC) transporter located in the peroxisomal membrane protein. ALDP deficiency impairs the peroxisomal beta-oxidation of very long-chain fatty acids (VLCFA) and facilitates their further chain elongation by ELOVL1 resulting in accumulation of VLCFA in plasma and tissues. While all patients have mutations in the ABCD1 gene, there is no general genotype-phenotype correlation. Environmental factors and a multitude of modifying genes appear to determine the clinical manifestation in this monogenetic but multifactorial disease. This review focuses on the clinical, biochemical, genetic and pathophysiological aspects of X-ALD. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号