首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu G 《Génome》2011,54(5):402-418
Comparative genome analysis is a powerful approach to understanding the biology of infectious bacterial pathogens. In this study, a quantitative approach, referred to as Gnom(Cmp), was developed to study the microevolution of bacterial pathogens. Although much more time-consuming than existing tools, this procedure provides a much higher resolution. Gnom(Cmp) accomplishes this by establishing genome-wide heterogeneity genotypes, which are then quantified and comparatively analyzed. The heterogeneity genotypes are defined as chromosomal base positions that have multiple variants within particular genomes, resulted from DNA duplications and subsequent mutations. To prove the concept, the procedure was applied on the genomes of 15 Staphylococcus aureus strains, focusing extensively on two pairs of hVISA/VISA strains. hVISA refers to heteroresistant vancomycin-intermediate S. aureus strains and VISA is their VISA mutants. hVISA/VISA displays some remarkable properties. hVISA is susceptible to vancomycin, but VISA mutants emerge soon after a short period of vancomycin therapy, therefore making the pathogen a great model organism for fast-evolving bacterial pathogens. The analysis indicated that Gnom(Cmp) could reveal variants within the genomes, which can be analyzed within the global genome context. Gnom(Cmp) discovered evolutionary hotspots and their dynamics among many closely related, even isogenic genomes. The analysis thus allows the exploration of the molecular mechanisms behind hVISA/VISA evolution, providing a working hypotheses for experimental testing and validation.  相似文献   

2.
3.
万古霉素敏感性下降的金黄色葡萄球菌(VISA/hV ISA)日益增多,已经成为公共健康的重要威胁。来自临床或实验室的VISA/hV ISA菌株表现出一些共同特征,如细胞壁增厚,自溶活性降低,毒力减弱,醋酸盐代谢异常。金葡菌从VSSA到VISA/hV ISA的转化是一个逐步演变的过程,VISA中一些调控基因的变异,特别是如wal KR、graRS、vra SR、rpo B、rpo C、rpo D、agr、msrR、fdh2、sle1等基因连续的变异与金葡菌对万古霉素的耐药性相关。VISA/hV ISA中相应基因的变异也是VISA/hV ISA对宿主毒力减弱,持续定殖及对宿主适应性改变的遗传基础。为了预防和控制VISA/hI VSA感染,应全面了解其生物学特性,开发简便有效的检验方法,探索制定灵活的治疗策略,达到有效防治的目的。  相似文献   

4.

Background

Vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) are associated with vancomycin treatment failure, and are becoming an increasing public health problem. Therefore, we undertook this study of 91 published studies and made subgroup comparisons of hVISA/VISA incidence in different study years, locations, and types of clinical samples. We also analyzed the genetic backgrounds of these strains.

Methods

A systematic literature review of relevant articles published in PubMed and EMBASE from January 1997 to August 2014 was conducted. We selected and assessed journal articles reporting the prevalence rates of hVISA/VISA.

Results

The pooled prevalence of hVISA was 6.05% in 99,042 methicillin-resistant S. aureus (MRSA) strains and that of VISA was 3.01% in 68,792 MRSA strains. The prevalence of hVISA was 4.68% before 2006, 5.38% in 2006–2009, and 7.01% in 2010–2014. VISA prevalence was 2.05%, 2.63%, and 7.93%, respectively. In a subgroup analysis of different isolation locations, the prevalence of hVISA strains was 6.81% in Asia and 5.60% in Europe/America, and that of VISA was 3.42% and 2.75%, respectively. The frequencies of hVISA isolated from blood culture samples and from all clinical samples were 9.81% and 4.68%, respectively, and those of VISA were 2.00% and 3.07%, respectively. The most prevalent genotype was staphylococcal cassette chromosome mec (SCCmec) II, which accounted for 48.16% and 37.74% of hVISA and VISA, respectively. Sequence Type (ST) 239 was most prevalent.

Conclusion

The prevalence of hVISA/VISA has been increasing in recent years, but has been grossly underestimated. Its incidence is higher in Asia than in Europe/America. hVISA is isolated from blood culture samples more often than from other samples. These strains are highly prevalent in epidemic MRSA strains. This study clarifies the epidemiology of hVISA/VISA and indicates that the detection of these strains and the control of nosocomial infections must be strengthened.  相似文献   

5.
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system.  相似文献   

6.
Vancomycin is the mainstay of treatment for patients with Staphylococcus aureus infections, and reduced susceptibility to vancomycin is becoming increasingly common. Accordingly, the development of rapid and accurate assays for the diagnosis of vancomycin-intermediate S. aureus (VISA) will be critical. We developed and applied a genome-based machine-learning approach for discrimination between VISA and vancomycin-susceptible S. aureus (VSSA) using 25 whole-genome sequences. The resulting machine-learning model, based on 14 gene parameters, including 3 molecular typing markers and 11 genes implicated in reduced vancomycin susceptibility, is able to unambiguously distinguish between the VISA and VSSA isolates analyzed here despite the fact that they do not form evolutionarily distinct groups. As such, the model is able to discriminate based on specific genomic markers of antibiotic susceptibility rather than overall sequence relatedness. Subsequent evaluation of the model using leave-one-out validation yielded a classification accuracy of 84%. The machine-learning approach described here provides a generalized framework for the application of genome sequence analysis to the classification of bacteria that differ with respect to clinically relevant phenotypes and should be particularly useful in defining the genomic features that underlie antibiotic resistance.  相似文献   

7.
The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target.  相似文献   

8.
Vancomycin-intermediate Staphylococcus aureus (VISA) strains tend to develop during glycopeptide treatment of infections caused by methicillin-resistant S. aureus (MRSA). Rapid and effective detection methods for VISA strains are lacking, and mechanisms of resistance are unclear. Here, global comparative proteomic approaches have been used to identify potential biomarkers of intermediate vancomycin resistance. With the use of high-resolution two-dimensional gels and iTRAQ mass tagging, numerous proteins were found to be differentially expressed between clinical MRSA and VISA isolates of the same multilocus sequence type. One of these, the predicted lytic transglycosylase SAV2095 (SceD-like protein), was selected for further study based on both its high level of induction in Mu50 and its predicted role in modeling the cell wall, which is the target of vancomycin. Relative SAV2095 mRNA expression levels were compared between 25 MRSA and VISA/heterogeneous VISA clinical isolates by real-time RT-PCR. The SAV2095 mRNA was significantly induced in all VISA isolates relative to all MRSA strains ( p < 0.001), and significant induction of SAV2095 was also seen for several potential heterogeneous VISA strains that appear vancomycin-sensitive by standard minimum inhibitory concentration-determining methods. Furthermore, strains selected in vitro for increasing levels of resistance from four unrelated clinical MRSA isolates displayed concomitant increases in levels of SAV2095 expression. Together, these results suggest that SAV2095 expression level could serve as a molecular diagnostic marker for the rapid detection of VISA.  相似文献   

9.
A series of isogenic methicillin-resistant Staphylococcus aureus isolates recovered from a bacteremic patient were shown to acquire gradually increasing levels of resistance to vancomycin during chemotherapy with the drug (K. Sieradzki, T. Leski, L. Borio, J. Dick, and A. Tomasz, J. Clin. Microbiol. 41:1687-1693, 2003). We compared properties of the earliest (parental) vancomycin-susceptible isolate, JH1 (MIC, 1 microg/ml), to two late (progeny) isolates, JH9 and JH14 (vancomycin MIC, 8 microg/ml). The resistant isolates produced abnormally thick cell walls and poorly separated cells when grown in antibiotic-free medium. Chemical analysis of the resistant isolates showed decreased cross-linkage of the peptidoglycan and drastically reduced levels of PBP4 as determined by the fluorographic assay. Resistant isolates showed reduced rates of cell wall turnover and autolysis. In vitro hydrolysis of resistant cell walls by autolytic extracts prepared from either susceptible or resistant strains was also slow, and this abnormality could be traced to a quantitative (or qualitative) change in the wall teichoic acid component of resistant isolates. Some change in the structure and/or metabolism of teichoic acids appears to be an important component of the mechanism of decreased susceptibility to vancomycin in S. aureus.  相似文献   

10.
11.
The MIC of vancomycin was determined for all S. aureus strains isolated during 1997 in one hospital. MIC values for most isolates were in the range of 0.5-2 mg/l. In 18 strains, MIC was = 6 mg/L. All these strains were MRSA. Recently described VISA strains possessed MIC values for vancomycin equal or higher than 8 mg/l and such strains were not detected in the investigated group. Although strains with MIC = 6 mg/l are not VISA, but they are candidate for reduced vancomycin susceptibility, e.g. during therapy in compromised patients. Analysis of DNA of these strains by pulsed-field gel electrophoresis (PFGE) revealed that 15 of them shared a significant similarity, allowing to place them in the same group. The comparison data of phage patterns as well as antibiotic resistance patterns strongly suggest that all these strains were derivatives of a single clone.  相似文献   

12.
The crystal structures of three vancomycin complexes with two vancomycin-sensitive cell-wall precursor analogs (diacetyl-Lys-D-Ala-D-Ala and acetyl-D-Ala-D-Ala) and a vancomycin-resistant cell-wall precursor analog (diacetyl-Lys-D-Ala-D-lactate) were determined at atomic resolutions of 1.80 A, 1.07 A, and 0.93 A, respectively. These structures not only reconfirm the "back-to-back" dimerization of vancomycin monomers and the ligand-binding scheme proposed by previous experiments but also show important structural features of strategies for the generation of new glycopeptide antibiotics. These structural features involve a water-mediated antibiotic-ligand interaction and supramolecular structures such as "side-by-side" arranged dimer-to-dimer structures, in addition to ligand-mediated and "face-to-face" arranged dimer-to-dimer structures. In the diacetyl-Lys-D-Ala-D-lactate complex, the interatomic O...O distance between the carbonyl oxygen of the fourth residue of the antibiotic backbone and the ester oxygen of the D-lactate moiety of the ligand is clearly longer than the corresponding N-H...O hydrogen-bonding distance observed in the two other complexes due to electrostatic repulsion. In addition, two neighboring hydrogen bonds are concomitantly lengthened. These observations provide, at least in part, a molecular basis for the reduced antibacterial activity of vancomycin toward vancomycin-resistant bacteria with cell-wall precursors terminating in -D-Ala-D-lactate.  相似文献   

13.
14.
15.
16.

Background

Despite hVISA infections being associated with vancomycin treatment failure, no previous study has been able to detect a mortality difference between heteroresistant vancomycin intermediate Staphylococcus aureus (hVISA) and vancomycin susceptible Staphylococcus aureus (VSSA) bloodstream infections (BSI).

Methodology

Consecutive methicillin-resistant S. aureus (MRSA) BSI episodes between 1996 and 2008 were reviewed. Patient demographics, clinical presentation, treatment and overall mortality at 30 days were extracted from the medical records. All isolates underwent vancomycin minimum inhibitory concentration (VMIC) testing by broth microdilution and Etest. hVISA was confirmed by population analysis profiling using the area under the curve method (PAP-AUC).

Principal Findings

401 evaluable MRSA BSI episodes were identified over the 12 years. Of these, 46 (11.5%) and 2 (0.5%) were confirmed as hVISA and VISA by PAP-AUC respectively. hVISA predominantly occurred in ST239-like MRSA isolates with high VMIC (2 mg/L). Compared to VSSA, hVISA was associated with chronic renal failure (p<0.001), device related infections (haemodialysis access) (p<0.001) and previous vancomycin usage (p = 0.004). On multivariate analysis, independent predictors of mortality included age, presence of multiple co-morbidities, principal diagnosis, transit to ICU and severity of illness while infection related surgery and hVISA phenotype were associated with increased survival.

Conclusions/Significance

The presence of hVISA is dependent on the appropriate interplay between host and pathogen factors. hVISA in ST239 MRSA is an independent predictor of survival. Whether these findings would be replicated across all MRSA clones is unknown and warrants further study.  相似文献   

17.
The VISA (vancomycin intermediate Staphylococcus aureus) and hetero-VISA strains were found among all isolates of S. aureus obtained in the years 1997-2000. The frequency of VISA was 0.3% and h-VISA was about 3%. Most but not all of the h-VISA and all VISA strains were methicillin resistant. Moreover the usefulness of different methods enabling recognition of the h-VISA strains was compared.  相似文献   

18.
The increasing emergence of multidrug-resistant Staphylococcus aureus is a problem of global importance. Here, we report the genome of S. aureus VC40, which is resistant to the last-resort antibiotics vancomycin and daptomycin. Its genome sequence will allow insights into the mechanisms that convey full resistance to these compounds.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) with reduced sensitivity to vancomycin (VAN) has caused many clinical cases of VAN treatment failure, but the molecular mechanism underlying the reduced sensitivity to VAN is still unclear. We isolated a heterogeneous VAN-intermediate Staphylococcus aureus (hVISA), which was also a MRSA strain with reduced sensitivity to VAN. To investigate the molecular mechanism underlying the reduced sensitivity to VAN exhibited by the hVISA strain, we compared the hVISA strain with a VAN-sensitive MRSA strain, known as the N315 strain. The images captured by transmission electron microscopy showed that the cell wall of the hVISA strain was significantly thicker than that of the N315 strain (36·72 ± 1·04 nm vs 28·15 ± 1·25 nm, P < 0·05), and the results of real-time quantitative PCR analysis suggested that the expression levels of the cell wall thickness related genes (glmS, vraR/S, sgtB, murZ and PBP4) of the hVISA strain were significantly higher than those of the N315 strain (P < 0·05). In conclusion, this study indicated that the upregulation of the expression of the genes related to cell wall synthesis might be the molecular mechanism underlying the cell wall thickening of the hVISA strain and might be related to its resistance to VAN.  相似文献   

20.
SN Leonard 《PloS one》2012,7(7):e42103

Introduction

Continued pressure from glycopeptide use has led to non-susceptible strains of Staphylococcus aureus including heterogeneously vancomycin-intermediate S. aureus (hVISA). Infections with hVISA are associated with poor patient outcomes, thus incentivizing novel treatments. Evidence suggests that vancomycin and anti-staphylococcal penicillin susceptibility are inversely related which indicates that the use of this combination may be particularly useful against methicillin-resistant S. aureus with reduced susceptibility to vancomycin, such as hVISA. The aim of this study was to evaluate the potential for synergy between vancomycin and nafcillin against hVISA.

Methods

Twenty-five hVISA strains were evaluated for vancomycin and nafcillin minimum inhibitory concentration (MIC) by broth microdilution in duplicate. Potential for synergy was assessed by time-kill at 1/2x MIC in triplicate. Five strains were chosen, representing the range nafcillin MIC’s available in the cohort –4, 16, 64, 128, and 256 µg/mL, and were run in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model in duplicate over 72 hours to evaluate the potential of the combination with simulated human pharmacokinetics. In addition, 4 fully glycopeptide susceptible strains of S. aureus including 2 methicillin-susceptible (MSSA) and 2 methicillin-resistant (MRSA) were run in the PK/PD model for comparison.

Results

In the time-kill, 92% of strains (23 of 25) displayed synergy with the combination of vancomycin and nafcillin. In the PK/PD model, all five strains of hVISA showed an improvement in overall activity (P≤0.004) and organism burden at 72 hours (P≤0.001) with the combination compared to either drug alone. The combination was also successful against both MRSA and MSSA in overall activity (P≤0.009) and organism burden at 72 hours (P≤0.016), though the magnitude of the effect was diminished against MSSA.

Conclusions

The combination of vancomycin and nafcillin significantly improved antibacterial activity against hVISA, MRSA, and MSSA compared to either drug alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号