首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Recent studies have reported oxidative damage due to bisphosphonate (BP) in various cancer tissues and neurons, although basic fibroblast growth factor (bFGF) induced antioxidant effects in the cells. The bFGF may modulate the BP-induced oxidative stress in oral epithelium of rats. This study was undertaken to explore possible beneficial antioxidant effects of bFGF on oxidative stress induced by BP in oral epithelium of rats. Twenty-eight rats were equally divided into four groups. The first group was used as control. The second, third and fourth groups intraperitoneally received BP (zoledronic acid), bFGF and BP + bFGF. At the end of 10 weeks, the rats were sacrificed, and oral epithelium samples were taken for analyses. In BP group, the lipid peroxidation levels were increased in the oral epithelium, while the activities of glutathione peroxidase (GSH-Px) and the concentrations of total antioxidant status (TAS) were decreased. In rats treated with bFGF, lipid peroxidation levels decreased, and the activities of GSH-Px and concentrations of TAS improved in the oral epithelium. However, zinc and copper levels were decreased in the oral epithelium by BP and bFGF treatments. Concentrations of vitamin E and reduced glutathione in the samples did not change in the groups. In conclusion, treatment with bFGF modulated the antioxidant redox system and reduced the oral epithelium oxidative stress induced by BP. However, zinc and copper levels were decreased by BP and bFGF treatments.  相似文献   

2.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   

3.
We investigated the effects of lamotrigine, aripiprazole and escitalopram administration and experimental depression on lipid peroxidation (LP) and antioxidant levels in cortex of the brain in rats. Forty male wistar rats were randomly divided into five groups. First group was used as control although second group was depression-induced group. Aripiprazole, lamotrigine and escitalopram per day were orally supplemented to chronic mild stress (CMS) depression-induced rats constituting the third, fourth and fifth groups for 28 days, respectively. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity, reduced glutathione and vitamin C of cortex of the brain although their levels and beta-carotene concentrations were increased by the three drugs administrations to the animals of CMS induced depression group. The LP levels in the cortex of the brain and plasma of depression group were elevated although their levels were decreased by the administrations. The increases of antioxidant values in lamotrigine group were higher according to aripiprazole and escitalopram supplemented groups. Vitamin A level did not change in the five groups. In conclusion, the experimental depression is associated with elevated oxidative stress although treatment with lamotrigine has most protective effects on the oxidative stress within three medicines.  相似文献   

4.
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.  相似文献   

5.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

6.
We investigated effects of two doses of Tenoxicam, a type 2 cyclooxygenase inhibitor, administration on lipid peroxidation and antioxidant redox system in cortex of the brain in rats. Twenty-two male Wistar rats were randomly divided into three groups. First group was used as control. 10 and 20 mg/kg body weight Tenoxicam were intramuscularly administrated to rats constituting the second and third groups for 10 days, respectively. Both dose of Tenoxicam administration resulted in significant increase in the glutathione peroxidase activity, reduced glutathione and vitamins C and E of cortex of the brain. The lipid peroxidation levels in the cortex of the brain were significantly decreased by the administration. Vitamin A and β-carotene concentration was not affected by the administration. There was no statistical difference in all values between 10 and 20 mg Tenoxicam administrated groups. In conclusion, treatment of brain with 10 and 20 mg Tenoxicam has protective effects on the oxidative stress by inhibiting free radical and supporting antioxidant redox system.  相似文献   

7.
The aim of this study was to determine the effects of cold stress on antioxidant enzyme activities and examine protein oxidation and lipid peroxidation in various tissues (brain, liver, kidney, heart and stomach). Twenty male Wistar rats (3 months old) weighing 220 ± 20 g were used. The rats were randomly divided into two groups of ten: the control group and the cold stress group. Cold stress was applied to the animals by maintaining them in a cold room (5 °C) for 15 min/day for 15 days. Blood samples were taken for measuring plasma corticosterone levels. Tissues were obtained from each rat for measuring the antioxidant enzyme activities, protein oxidation and lipid peroxidation. Corticosterone levels were increased in the cold stress group. Copper, zinc superoxide dismutase activities were increased in the brains, livers and kidneys, whereas they decreased in the hearts and stomachs of rats in the cold stress group. Catalase activities were increased in the brains, livers, kidneys and hearts, whereas they decreased in the stomachs of rats in the cold stress group. Selenium-dependent glutathione peroxidase activities were increased in the brain, liver, heart and stomach. Reduced glutathione levels were decreased, while levels of protein carbonyl, conjugated diene and thiobarbituric-acid-reactive substances were increased in all tissues of the cold stress group. These results lead us to conclude that cold stress can disrupt the balance in an oxidant/antioxidant system and cause oxidative damage to several tissues by altering the enzymatic and non-enzymatic antioxidant status, protein oxidation and lipid peroxidation.  相似文献   

8.
It has been suggested that oxidative stress plays an important role in the pathophysiology of traumatic brain injury (TBI). N-acetylcysteine (NAC) and selenium (Se) display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties although there is no report on oxidative stress, antioxidant vitamin, interleukin-1 beta (IL)-1β and IL-4 levels in brain and blood of TBI-induced rats. We investigated effects of NAC and Se administration on physical injury-induced brain toxicity in rats. Thirty-six male Sprague–Dawley rats were equally divided into four groups. First and second groups were used as control and TBI groups, respectively. NAC and Se were administrated to rats constituting third and forth groups at 1, 24, 48 and 72 h after TBI induction, respectively. At the end of 72 h, plasma, erythrocytes and brain cortex samples were taken. TBI resulted in significant increase in brain cortex, erythrocytes and plasma lipid peroxidation, total oxidant status (TOS) in brain cortex, and plasma IL-1β values although brain cortex vitamin A, β-carotene, vitamin C, vitamin E, reduced glutathione (GSH) and total antioxidant status (TAS) values, and plasma vitamin E concentrations, plasma IL-4 level and brain cortex and erythrocyte glutathione peroxidase (GSH-Px) activities decreased by TBI. The lipid peroxidation and IL-1β values were decreased by NAC and Se treatments. Plasma IL-4, brain cortex GSH, TAS, vitamin C and vitamin E values were increased by NAC and Se treatments although the brain cortex vitamin A and erythrocyte GSH-Px values were increased through NAC only. In conclusion, NAC and Se caused protective effects on the TBI-induced oxidative brain injury and interleukin production by inhibiting free radical production, regulation of cytokine-dependent processes and supporting antioxidant redox system.  相似文献   

9.
Patients affected by medium-chain acyl-CoA dehydrogenase deficiency (MCADD) suffer from acute episodes of encephalopathy whose underlying mechanisms are poorly known. The present work investigated the in vitro effect of cis-4-decenoic acid (cDA), which accumulates in MCADD, on important parameters of oxidative stress in cerebral cortex of young rats. cDA markedly induced lipid peroxidation, as verified by the increased levels of spontaneous chemiluminescence and thiobarbituric acid-reactive substances. Furthermore, cDA significantly increased carbonyl formation and sulphydryl oxidation, which is indicative of protein oxidative damage, and promoted 2',7'-dihydrodichlorofluorescein oxidation. It was also observed that the non-enzymatic tissue antioxidant defenses were decreased by cDA, whereas the antioxidant enzyme activities catalase, superoxide dismutase and glutathione peroxidase were not altered. Moreover, cDA-induced lipid peroxidation and GSH reduction was totally blocked by free radical scavengers, suggesting that reactive species were involved in these effects. The data indicate that oxidative stress is induced by cDA in rat brain in vitro and that oxidative damage might be involved in the pathophysiology of the encephalopathy in MCADD.  相似文献   

10.
We determined the effects of immobilization stress on antioxidant status, protein oxidation and lipid peroxidation in brain, liver, kidney, heart and stomach of rats. Sixteen male Wistar rats (3 months old) were divided into controls (C) and immobilization stress group (IS). IS rats were immobilized for 180 min/day for 15 days. Plasma corticosterone levels were increased in IS group. Copper,zinc-superoxide dismutase activities were increased in brain, liver and kidney, but decreased in the heart and stomach after immobilization. Catalase activities were increased in brain, kidney and heart, and decreased in liver and stomach. Selenium-dependent glutathione peroxidase activities were decreased in brain and kidney, but increased in heart and stomach. Reduced glutathione levels were decreased, while protein carbonyl, conjugated dienes and thiobarbituric acid-reactive substances levels were increased in all tissues. Our results showed that the response of antioxidant defense system to stress differs for each tissue, and protein oxidation and lipid peroxidation is induced by immobilization stress in peripheral tissues.  相似文献   

11.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

12.
Patients affected by medium-chain acyl-CoA dehydrogenase deficiency (MCADD) suffer from acute episodes of encephalopathy whose underlying mechanisms are poorly known. The present work investigated the in vitro effect of cis-4-decenoic acid (cDA), which accumulates in MCADD, on important parameters of oxidative stress in cerebral cortex of young rats. cDA markedly induced lipid peroxidation, as verified by the increased levels of spontaneous chemiluminescence and thiobarbituric acid-reactive substances. Furthermore, cDA significantly increased carbonyl formation and sulphydryl oxidation, which is indicative of protein oxidative damage, and promoted 2′,7′-dihydrodichlorofluorescein oxidation. It was also observed that the non-enzymatic tissue antioxidant defenses were decreased by cDA, whereas the antioxidant enzyme activities catalase, superoxide dismutase and glutathione peroxidase were not altered. Moreover, cDA-induced lipid peroxidation and GSH reduction was totally blocked by free radical scavengers, suggesting that reactive species were involved in these effects. The data indicate that oxidative stress is induced by cDA in rat brain in vitro and that oxidative damage might be involved in the pathophysiology of the encephalopathy in MCADD.  相似文献   

13.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

14.
An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses.  相似文献   

15.
The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic‐induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28‐day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic‐induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic‐induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic‐induced lipid peroxidation by enhancing antioxidant defense mechanisms.  相似文献   

16.
In order to elucidate the oxidative damage in rat brain caused by oxidative stress, regional changes in the levels of lipid peroxidation products and antioxidative defense systems in cerebral cortex and hippocampus, and in their synapses, which modulate learning and memory functions in the brain, were studied. When rats were subjected to hyperoxia as an oxidative stress, thiobarbituric acid reactive substance (TBARS) in the regions studied increased more than in normal rats by approximately 35%. The values in oxygen-unexposed vitamin E-deficient rats were also higher than in normal rats. It was found that the TBARS contents in synaptosomes isolated from both regions were remarkably higher than in the organs. These results imply that synapses are more susceptible to oxidative stress than the organ itself. This tendency was also observed in the content of conjugated diene. In response to oxidative stress, the status of the antioxidant defense system in each region, i.e. the concentration of vitamin E, and the activities of superoxide dismutase, catalase and glutathione peroxidase, decreased remarkably. On the other hand, in oxygen-unexposed vitamin E-deficient rats, the activities of these enzymes in each region tended to increase, except for catalase activity. These results suggest that in response to the oxidative stress, the antioxidant defense systems may be consumed to prevent oxidative damage, and then, may be supplied through the antioxidant network.  相似文献   

17.
It has been widely suggested that oxidative stress products play an important role in the pathophysiology of epilepsy. Capparis ovata (C. ovata) may useful treatment of epilepsy because it contains antioxidant flavonoids. The current study was designed to determine the effects of C. ovata on lipid peroxidation, antioxidant levels and electroencephalography (EEG) records in pentylentetrazol (PTZ)-induced epileptic rats. Thirty-two rats were randomly divided into four groups. First group was used as control although second group was PTZ group. Oral 100 and 200 mg/kg C. ovata were given to rats constituting the third and fourth groups for 7 days before PTZ administration. Second, third and forth groups received 60 mg/kg PTZ for induction of epilepsy. Three hours after administration of PTZ, EEG records, brain cortex and blood samples were taken all groups. The lipid peroxidation levels of the brain cortex, number of spikes and epileptiform discharges of EEG were higher in PTZ group than in control and C. ovata group whereas they were decreased by C. ovata administration. Vitamin A, vitamin C, vitamin E and β-carotene concentrations of brain cortex and latency to first spike of EEG were decreased by the PTZ administration although the brain cortex and plasma vitamin concentrations, and brain cortex and erythrocyte glutathione and glutathione peroxidase values were increased in PTZ + 100 and PTZ + 200 mg C. ovata groups. In conclusion, C. ovata administration caused protection against the PTZ-induced brain oxidative toxicity by inhibiting free radical and epileptic seizures, and supporting antioxidant redox system.  相似文献   

18.
This study was designed to investigate effect of alpha-lipoic acid (LA) on lipid peroxidation, nitric oxide production and antioxidant systems in rats exposed to chronic restraint stress. Twenty four male Wistar rats, aged three months, were divided into four groups: control (C), the group treated with LA (L), the group exposed to restraint stress (S) and the group exposed to stress and treated with LA (LS). Restraint stress was applied for 21 days (1 h/day) and LA (100 mg/kg/day) was injected intraperitonally to the L and LS groups for the same period. Restraint stress significantly decreased brain copper/zinc superoxide dismutase (Cu,Zn-SOD) and brain and retina glutathione peroxidase (GSH-Px) and catalase (CAT) activities compared with the control group. Thiobarbituric acid reactive substances (TBARS), nitrite and nitrate levels were significantly increased in the tissues of the S group compared with the C group. LA produced a significant decrease in brain and retina TBARS, nitrite and nitrate levels of the L and LS groups compared to their corresponding control groups. LA increased all enzyme activities in the tissues of the LS group compared to the S group. Our study indicated that LA is an ideal antioxidant candidate for the prevention of stress-induced lipid peroxidation.  相似文献   

19.
Copper deficiency causes more salient pathologic changes in the heart than in the liver of rats. Although oxidative stress has been implicated in copper deficiency-induced pathogenesis, little is known about the selective toxicity to the heart. Therefore, we examined the relationship between the severity of copper deficiency-induced oxidative damage and the capacity of antioxidant defense in heart and liver to investigate a possible mechanism for the selective cardiotoxicity. Weanling rats were fed a purified diet deficient in copper (0.4 μg/g diet) or one containing adequate copper (6.0 μg/g diet) for 4 weeks. Copper deficiency induced a 2-fold increase in lipid peroxidation in the heart (thiobarbituric assay) but did not alter peroxidation in the liver. The antioxidant enzymatic activities of superoxide dismutase, catalase, and glutathione peroxidase were, respectively, 3-, 50- and 1.5-fold lower in the heart than in the liver, although these enzymatic activities were depressed in both organs by copper deficiency. In addition, the activity of glutathione reductase was 4 times lower in the heart than in the liver. The data suggest that a weak antioxidant defense system in the heart is responsible for the relatively high degree of oxidative damage in copper-deficient hearts.  相似文献   

20.
The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions. TCDD caused dose-dependent increases in the production of SA and lipid peroxidation in Cc and H and those were associated with dose-dependent suppressions of SOD. While a TCDD dose of 10 ng/kg/d resulted in significant increases in catalase and GSH-Px activities in Cc and H, doses of 22 and 46 ng/kg/d resulted in dose-dependent suppressions of these two enzymes in the same regions. In the C and Bs, TCDD treatment did not result in significant production of SA and lipid peroxidation but it resulted in dose-dependent increases in the activities of various antioxidant enzymes. These results suggest that Cc and H are vulnerable to TCDD-induced oxidative stress after subchronic exposure, and that C and Bs are protected against that effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号