首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The scorpion family Typhlochactidae Mitchell, 1971 is endemic to eastern Mexico and exclusively troglomorphic. Six of the nine species in the family are hypogean (troglobitic), morphologically specialized for life in the cave environment, whereas three are endogean (humicolous) and comparably less specialized. The family therefore provides a model for testing the hypotheses that ecological specialists (stenotopes) evolve from generalist ancestors (eurytopes) and that specialization (in this case to the cavernicolous habitat) is an irreversible, evolutionary dead‐end that ultimately leads to extinction. Due to their cryptic ecology, inaccessible habitat, and apparently low population density, Typhlochactidae are very poorly known. The monophyly of these troglomorphic scorpions has never been rigorously tested, nor has their phylogeny been investigated in a quantitative analysis. We test and confirm their monophyly with a cladistic analysis of 195 morphological characters (142 phylogenetically informative), the first for a group of scorpions in which primary homology of pedipalp trichobothria was determined strictly according to topographical identity (the “placeholder approach”). The phylogeny of Typhlochactidae challenges the conventional wisdom that ecological specialization (stenotopy) is unidirectional and irreversible, falsifying Cope’s Law of the unspecialized and Dollo’s Law of evolutionary irreversibility. Troglobitism is not an evolutionary dead‐end: endogean scorpions evolved from hypogean ancestors on more than one occasion. © The Willi Hennig Society 2009.  相似文献   

2.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

3.
Among the primary contributions of phylogenetic systematicsto the synthesis of developmental biology and evolution arephylogenetic hypotheses. Phylogenetic hypotheses are criticalin interpreting the patterns of evolution of developmental genesand processes, as are morphological data. Using a robust phylogeny,the evolutionary history of individual morphological or developmentalfeatures can be traced and ancestral conditions inferred. Multiplecharacters (e.g., morphological and developmental) can be mappedtogether on the phylogeny, and patterns of character associationcan be quantified and tested for correlation. Using the vertebrate forelimb as an example, I show that bymapping accurate morphological data (homologous skeletal elementsof the vertebrate forelimb) onto a phylogeny, an alternativeinterpretation of Hox gene expression emerges. Teleost fishesand tetrapods may share no homologous skeletal elements in theirforelimbs, and thus similarities and differences in Hox patternsduring limb development must be reinterpreted. Specifically,the presence of the phase III Hox pattern in tetrapods may notbe correlated with digits but rather may simply be the normalexpression pattern of a metapterygium in fishes. This exampleillustrates the rigorous hypotheses that can be developed usingmorphological data and phylogenetic methods. "Creating a general reference system and investigating the relationsthat extend from it to all other possible and necessary systemsin biology is the task of systematics." (Hennig, 1966, p.7)  相似文献   

4.
The genus Anthrobia Tellkampf, 1844 is revised and expanded to include two epigean species, Anthrobia acuminata ( Emerton, 1913 ) comb. nov., and A. whiteleyae sp. nov., and two troglobites, the type species A. monmouthia Tellkampf, 1844 , and A. coylei sp. nov. The female of A. acuminata is described for the first time. All four Anthrobia species were added to a phylogenetic analysis of erigonine genera. Analysis of this matrix results in a single most parsimonious tree (length = 915, CI = 0.23, RI = 0.58; uninformative characters excluded: length = 911, CI = 0.23), which places Anthrobia sister to Diplocentria Hull, 1911. Troglobitic Anthrobia and epigean Anthrobia are both monophyletic. In comparison to the epigean species, troglobitic Anthrobia exhibit the following putative adaptations to cave life: loss of eyes, elongation of the legs, and reduction of the tracheal system. The reliability of phylogenetic results indicating monophyly of cave Anthrobia are discussed in light of the fact that potentially cave adaptive synapomorphies support this relationship.  相似文献   

5.
Reconstructing the evolution of complex bird song in the oropendolas   总被引:1,自引:0,他引:1  
The elaborate songs of songbirds are frequent models for investigating the evolution of animal signals. However, few previous studies have attempted to reconstruct historical changes in song evolution using a phylogenetic comparative approach. In particular, no comparative studies of bird song have used a large number of vocal characters and a well-supported, independently derived phylogeny. We identified 32 features in the complex vocal displays of male oropendolas (genera Psarocolius, Gymnostinops, and Ocyalus) that are relatively invariant within taxa and mapped these characters onto a robust molecular phylogeny of the group. Our analysis revealed that many aspects of oropendola song are surprisingly evolutionarily conservative and thus are potentially useful characters for reconstructing historical patterns. Of the characters that varied among taxa, nearly two thirds (19 of 29) showed no evidence of evolutionary convergence or reversal when mapped onto the tree, which was reflected in a high overall consistency index (CI = 0.78) and retention index (RI = 0.88). Some reconstructed patterns provided evidence of selection on these signals. For example, rapid divergence of the songs of the Montezuma oropendola, Gymnostinops montezuma, from those of closely related taxa suggests the recent influence of strong sexual selection. In general, our results provide insights into the mode of vocal evolution in songbirds and suggest that complex vocalizations can provide information about phylogeny. Based on this evidence, we use song characters to estimate the phylogenetic affinities of three oropendola taxa for which molecular data are not yet available.  相似文献   

6.
The law of the unspecialized states that specialized taxa have evolved from more generalized ancestors. Moreover, it is usually assumed that ecological specialization is irreversible and hence leads to extinction. This study aims to test these assumptions using a phylogenetic framework in a case study within the springtail genus Willemia and its diverse life habits. This genus is represented mostly by loam-dwelling species (generalized condition), but some species are psammophilous, living in sandy habitats (specialized condition). Fifty-two morphological characters were examined in 34 of the 36 species of the genus and in three outgroups. The cladistic analysis yielded two most parsimonious trees (tree length 124 steps; consistency index 0.56; retention index 0.86). The evolution of psammophily versus loam-confined life is compared to the cladogram: unexpectedly, psammophily is not an evolutionary innovation that occurred once in a monophyletic group; the evolutionary scenario that parsimoniously fits the phylogeny suggests that psammophily is ancestral to the genus Willemia and reversed twice to loam-confined life. These results demonstrate that habitat generalists can evolve from habitat specialists and therefore that habitat specializations are not necessarily an evolutionary dead end. Many other seemingly specialized characters may be shown to be equally malleable.  相似文献   

7.
Adaptive convergence in morphological characters has not been thoroughly investigated, and the processes by which phylogenetic relationships may be misled by morphological convergence remains unclear. We undertook a case study on the morphological evolution of viverrid-like feliformians (Nandinia, Cryptoprocta, Fossa, Eupleres, Prionodon) and built the largest morphological matrix concerning the suborder Feliformia to date. A total of 349 characters grouped into four anatomical partitions were used for all species of Viverridae and viverrid-like taxa plus representatives of the Felidae, Hyaenidae, Herpestidae, and one Malagasy mongoose. Recent molecular phylogenetic analyses suggest that viverrid-like morphotypes appeared independently at least three times during feliformian evolution. We thus used a synthetic molecular tree to assess morphological evolutionary patterns characterizing the viverrid-like taxa. We examined phylogenetic signal, convergence and noise in morphological characters using (a) tree-length distribution (g1), (b) partitioned Bremer support, (c) RI values and their distribution, (d) respective contributions of diagnostic synapomorphies at the nodes for each partition, (e) patterns of shared convergences among viverrid-like taxa and other feliformian lineages, (f) tree-length differences among alternative hypotheses, and (g) the successive removal of convergent character states from the original matrix. In addition, the lability of complex morphological structures was assessed by mapping them onto the synthetic molecular tree. The unconstrained morphological analysis yielded phylogenetic groupings that closely reflected traditional classification. The use of a synthetic molecular tree (constraint) combined with our thorough morphological investigations revealed the mosaics of convergences likely to have contributed to part of the historical uncertainty over viverrid classification. It also showed that complex morphological structures could be subjected to reversible evolutionary trends. The morphological matrix proved useful in characterizing several feliformian clades with diagnostic synapomorphies. These results support the removal from the traditionally held Viverridae of several viverrid-like taxa into three distinct families: Nandiniidae (Nandinia), Prionodontidae (Prionodon), and the newly defined Eupleridae (including Cryptoprocta, Fossa, Eupleres plus all "mongoose-like" Malagasy taxa). No clearly "phylogenetically misleading" data subsets could be identified, and the great majority of morphological convergences appeared to be nonadaptive. The multiple approaches used in this study revealed that the most disruptive element with regards to morphological phylogenetic reconstruction was noise, which blured the expression of phylogenetic signal. This study demonstrates the crucial need to consider independent (molecular) phylogenies in order to produce reliable evolutionary hypotheses and should promote a new approach to the definition of morphological characters in mammals. [Constrained analysis; convergence; evolutionary scenario; Feliformia; morphology; noise; phylogenetic signal; phylogeny; Viverridae.].  相似文献   

8.
Phylogenetic studies based on DNA sequences typically ignore the potential occurrence of recombination, which may produce different alignment regions with different evolutionary histories. Traditional phylogenetic methods assume that a single history underlies the data. If recombination is present, can we expect the inferred phylogeny to represent any of the underlying evolutionary histories? We examined this question by applying traditional phylogenetic reconstruction methods to simulated recombinant sequence alignments. The effect of recombination on phylogeny estimation depended on the relatedness of the sequences involved in the recombinational event and on the extent of the different regions with different phylogenetic histories. Given the topologies examined here, when the recombinational event was ancient, or when recombination occurred between closely related taxa, one of the two phylogenies underlying the data was generally inferred. In this scenario, the evolutionary history corresponding to the majority of the positions in the alignment was generally recovered. Very different results were obtained when recombination occurred recently among divergent taxa. In this case, when the recombinational breakpoint divided the alignment in two regions of similar length, a phylogeny that was different from any of the true phylogenies underlying the data was inferred.  相似文献   

9.
Although cladistic analysis has been used to compare hypotheses of relationships among early hominids, the outcomes of different studies have depended entirely on the assumptions made by different investigators. Problems include the close genetic relationship of early hominid taxa, small fossil sample sizes, possible correlations among characters, and a lack of understanding about the evolutionary factors affecting characters. This study investigates the interaction of some of these problems affecting early hominid phylogenetics. Monte Carlo simulations of character state evolution in closely related taxa demonstrate that the sample sizes and close genetic relationships of early hominids do not permit cladistic analyses to obtain unequivocal results. Even with unrealistically good assumptions about the evolutionary dynamics affecting characters, the probability of the most parsimonious hypothesis being true is unacceptably small. In the face of these problems, even phylogenetic statements that are supported by a strong consensus of cladistic studies may nevertheless be in error, and such errors are likely to confound the placement of new specimens and taxa. Advancement in our knowledge of hominid phylogeny can depend only on a fuller understanding of the natural history and evolutionary dynamics of traits.  相似文献   

10.
In the late 1980s, researchers began applying molecular sequencing tools to questions of deep animal phylogeny. These advances in sequencing were accompanied with improvements in computation and phylogenetic methods, and served to significantly reshape our understanding of metazoan evolution. Prior to this time, researchers asserted phylogenetic hypotheses based on their experience with taxa and to some degree, their authority. Molecular phylogenetic tools provided discrete methods and objective characters for reconstructing phylogeny. Nonetheless, major changes to widely accepted views, such as animal phylogeny, take time to be accepted. Development and acceptance of our current understanding of animal evolution occurred in three main phases: initial hypotheses based on 18S data, confirmation with additional molecular markers, and continued refinement with phylogenomics. With the advent of ideas such as Lophotrochozoa and Ecdysozoa, flaws in the traditional view became apparent. We now understand that complex morphological and embryological features (e.g., segmentation, coelom formation, development of body cavities) are much more evolutionarily plastic than previously recognized. Here, I explore how the transition from the traditional to the modern phylogenetic understanding of animal phylogeny occurred and examine some implications of this change in understanding. As the field moves forward, the utility of morphological and embryological characters for reconstruction of deep animal phylogeny should be discouraged. Instead, these characters should be interpreted in the light of independent phylogeny.  相似文献   

11.
12.
Previous studies of the phylogeny of land plants based on analysis of 18S ribosomal DNA (rDNA) sequences have generally found weak support for the relationships recovered and at least some obviously spurious relationships, resulting in equivocal inferences of land plant phylogeny. We hypothesized that greater sampling of both characters and taxa would improve inferences of land plant phylogeny based on 18S rDNA sequences. We therefore conducted a phylogenetic analysis of complete (or nearly complete) 18S rDNA sequences for 93 species of land plants and 7 green algal relatives. Parsimony analyses with equal weighting of characters and characters state changes and parsimony analyses weighting (1) stem bases half as much as loop bases and (2) transitions half as much as transversions did not produce substantially different topologies. Although the general structure of the shortest trees is consistent with most hypotheses of land plant phylogeny, several relationships, particularly among major groups of land plants, appear spurious. Increased character and taxon sampling did not substantially improve the performance of 18S rDNA in phylogenetic analyses of land plants, nor did analyses designed to accommodate variation in evolutionary rates among sites. The rate and pattern of 18S rDNA evolution across land plants may limit the usefulness of this gene for phylogeny reconstruction at deep levels of plant phylogeny. We conclude that the mosaic structure of 18S rDNA, consisting of highly conserved and highly variable regions, may contain historical signal at two levels. Rapidly evolving regions are informative for relatively recent divergences (e.g., within angiosperms, seed plants, and ferns), but homoplasy at these sites makes it difficult to resolve relationships among these groups. At deeper levels, changes in the highly conserved regions of small-subunit rDNAs provide signal across all of life. Because constraints imposed by the secondary structure of the rRNA may affect the phylogenetic information content of 18S rDNA, we suggest that 18S rDNA sequences be combined with other data and that methods of analysis be employed to accommodate these differences in evolutionary patterns, particularly across deep divergences in the tree of life.  相似文献   

13.
Recent developments in the analysis of comparative data   总被引:5,自引:0,他引:5  
Comparative methods can be used to test ideas about adaptation by identifying cases of either parallel or convergent evolutionary change across taxa. Phylogenetic relationships must be known or inferred if comparative methods are to separate the cross-taxonomic covariation among traits associated with evolutionary change from that attributable to common ancestry. Only the former can be used to test ideas linking convergent or parallel evolutionary change to some aspect of the environment. The comparative methods that are currently available differ in how they manage the effects brought about by phylogenetic relationships. One method is applicable only to discrete data, and uses cladistic techniques to identify evolutionary events that depart from phylogenetic trends. Techniques for continuous variables attempt to control for phylogenetic effects in a variety of ways. One method examines the taxonomic distribution of variance to identify the taxa within which character variation is small. The method assumes that taxa with small amounts of variation are those in which little evolutionary change has occurred, and thus variation is unlikely to be independent of ancestral trends. Analyses are then concentrated among taxa that show more variation, on the assumption that greater evolutionary change in the character has taken place. Several methods estimate directly the extent to which ancestry can predict the observed variation of a character, and subtract the ancestral effect to reveal variation of phylogeny. Yet another can remove phylogenetic effects if the true phylogeny is known. One class of comparative methods controls for phylogenetic effects by searching for comparative trends within rather than across taxa. With current knowledge of phylogenies, there is a trade-off in the choice of a comparative method: those that control phylogenetic effects with greater certainty are either less applicable to real data, or they make restrictive or untestable assumptions. Those that rely on statistical patterns to infer phylogenetic effects may not control phylogeny as efficiently but are more readily applied to existing data sets.  相似文献   

14.
Long branches in a true phylogeny tend to disrupt hierarchical character covariation (phylogenetic signal) in the distribution of traits among organisms. The distortion of hierarchical structure in character-state matrices can lead to errors in the estimation of phylogenetic relationships and inconsistency of methods of phylogenetic inference. Examination of trees distorted by long-branch attraction will not reveal the identities of problematic taxa, in part because the distortion can mask long branches by reducing inferred branch lengths and through errors in branching order. Here we present a simple method for the detection of taxa whose placement in evolutionary trees is made difficult by the effects of long-branch attraction. The method is an extension of a tree-independent conceptual framework of phylogenetic data exploration (RASA). Taxa that are likely to attract are revealed because long branches leave distinct footprints in the distribution of character states among taxa, and these traces can be directly observed in the error structure of the RASA regression. Problematic taxa are identified using a new diagnostic plot called the taxon variance plot, in which the apparent cladistic and phenetic variances contributed by individual taxa are compared. The procedure for identifying long edges employs algorithms solved in polynomial time and can be applied to morphological, molecular, and mixed characters. The efficacy of the method is demonstrated using simulated evolution and empirical evidence of long branches in a set of recently published sequences. We show that the accuracy of evolutionary trees can be improved by detecting and combating the potentially misleading influences of long-branch taxa.  相似文献   

15.
Marquès and Gnaspini [Cladistics 17 (2001) 371–381] analyzed the problem of the phylogenetic treatment of characters submitted to parallel evolution. Their proposal aimed at preserving the potential phylogenetic significance of supposedly homoplastic characters and considering them for phylogeny reconstruction. As an example, they used the troglobiomorphic features of animals restricted to caves; according to their preliminary hypothesis of homoplasy, troglobitic animals would exhibit a particular phenotype, referred to as troglobiomorphic, which they would acquire under similar selective pressures from the subterranean environment. We examined Marquès and Gnaspini's approach not from the point of view of its technical flaws, but from the point of view of the authors’ basic assertions on the treatment of troglobiomorphic characters and more generally the inclusion/exclusion/transformation of characters prior to phylogenetic analysis. In the present paper, we argue that this approach is invalidated by the repeated use of ad hoc hypotheses, which are supported neither by an existing phylogenetic pattern nor by available data. We consequently contest the adequateness of this approach with a cladistic analysis of historical questions.  相似文献   

16.
The relevance of the Modern Evolutionary Synthesis to the foundations of taxonomy (the construction of groups, both taxa and phyla) is reexamined. The nondimensional biological species concept, and not the multidimensional, taxonomic, species notion which is based on it, represents a culmination of an evolutionary understanding. It demonstrates how established evolutionary mechanisms acting on populations of sexually reproducing organisms provide the testable ontological basis of the species category. We question the ontology and epistemology of the phylogenetic or evolutionary species concept, and find it to be a fundamentally untenable one. We argue that at best, the phylogenetic species is a taxonomic species notion which is not a theoretical concept, and therefore should not serve as foundation for taxonomic theory in general, phylogenetics, and macroevolutionary reconstruction in particular. Although both evolutionary systematists and cladists are phylogeneticists, the reconstruction of the history of life is fundamentally different in these two approaches. We maintain that all method, including taxonomic ones, must fall out of well corroborated theory. In the case of taxonomic methodology the theoretical base must be evolutionary. The axiomatic assumptions that all phena, living and fossil, must be holophyletic taxa (species, and above), resulting from splitting events, and subsequently that evaluation of evolutionary change must be based on a taxic perspective codified by the Hennig ian taxonomic species notion, are not testable premises. We discuss the relationship between some biologically, and therefore taxonomically, significant patterns in nature, and the process dependence of these patterns. Process-free establishment of deductively tested “genealogies” is a contradiction in terms; it is impossible to “recover” phylogenetic patterns without the investment of causal and processual explanations of characters to establish well tested taxonomic properties of these (such as homologies, apomorphies, synapomorphies, or transformation series). Phylogenies of either characters or of taxa are historical-narrative explanations (H-N Es), based on both inductively formulated hypotheses and tested against objective, empirical evidence. We further discuss why construction of a “genealogy”, the alleged framework for “evolutionary reconstruction”, based on a taxic, cladistic outgroup comparison and a posteriori weighting of characters is circular. We define how the procedure called null-group comparison leads to the noncircular testing of the taxonomic properties of characters against which the group phylogenies must be tested. This is the only valid rooting procedure for either character or taxon evolution. While the Hennig -principle is obviously a sound deduction from the theory of descent, cladistic reconstruction of evolutionary history itself lacks a valid methodology for testing transformation hypotheses of both characters and species. We discuss why the paleontological method is part of comparative biology with a critical time dimension ana why we believe that an “ontogenetic method” is not valid. In our view, a merger of exclusive (causal and interactive, but best described as levels of organization) and inclusive (classificatory) hierarchies has not been accomplished by a taxic scheme of evolution advocated by some. Transformational change by its very nature is not classifiable in an inclusive hierarchy, and therefore no classification can fully reflect the causal and interactive chains of events constituting phylogeny, without ignoring and contradicting large areas of corroborated evolutionary theory. Attempts to equate progressive evolutionary change with taxic schemes by Haeckel were fundamentally flawed. His ideas found 19th century expression in a taxic perception of the evolutionary process (“phylogenesis”), a merger of typology, hierarchic and taxic notions of progress, all rooted in an ontogenetic view of phylogeny. The modern schemes of genealogical hierarchies, based on punctuation and a notion of “species” individuality, have yet to demonstrate that they hold promise beyond the Haeckel ian view of progressive evolution.  相似文献   

17.
18.
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

19.
The phylogenetic placements of several African endemic genera at the base of Apiaceae subfamilies Saniculoideae and Apioideae have revolutionized ideas of relationships that affect hypotheses of character evolution and biogeography. Using an explicit phylogeny of subfamily Saniculoideae, we reconstructed the evolutionary history of phenotypic characters traditionally important in classification, identified those characters most useful in supporting relationships, and inferred historical biogeography. The 23 characters examined include those of life history, vegetative morphology, inflorescences, and fruit morphology and anatomy. These characters were optimized over trees derived from maximum parsimony analysis of chloroplast DNA trnQ-trnK sequences from 94 accessions of Apiaceae. The results revealed that many of these characters have undergone considerable modification and that traditional assumptions regarding character-state polarity are often incorrect. Infrasubfamilial relationships inferred by molecular data are supported by one to five morphological characters. However, none of these morphological characters support the monophyly of subfamilies Saniculoideae or Apioideae, the clade of Petagnaea, Eryngium and Sanicula, or the sister-group relationship between Eryngium and Sanicula . Southern African origins of Saniculoideae and of its tribes Steganotaenieae and Saniculeae are supported based on dispersal-vicariance analysis.  相似文献   

20.
Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号