首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tachystatin B is an antimicrobial and a chitin-binding peptide isolated from the Japanese horseshoe crab (Tachypleus tridentatus) consisting of two isopeptides called tachystatin B1 and B2. We have determined their solution structures using NMR experiments and distance geometry calculations. The 20 best converged structures of tachystatin B1 and B2 exhibited root mean square deviations of 0.46 and 0.49 A, respectively, for the backbone atoms in Cys(4)-Arg(40). Both structures have identical conformations, and they contain a short antiparallel beta-sheet with an inhibitory cystine-knot (ICK) motif that is distributed widely in the antagonists for voltage-gated ion channels, although tachystatin B does not have neurotoxic activity. The structural homology search provided several peptides with structures similar to that of tachystatin B. However, most of them have the advanced functions such as insecticidal activity, suggesting that tachystatin B may be a kind of ancestor of antimicrobial peptide in the molecular evolutionary history. Tachystatin B also displays a significant structural similarity to tachystatin A, which is member of the tachystatin family. The structural comparison of both tachystatins indicated that Tyr(14) and Arg(17) in the long loop between the first and second strands might be the essential residues for binding to chitin.  相似文献   

2.
Six alpha-defensins have been found in humans. These small arginine-rich peptides play important roles in various processes related to host defense, being the effectors and regulators of innate immunity as well as enhancers of adoptive immune responses. Four defensins, called neutrophil peptides 1 through 4, are stored primarily in polymorphonuclear leukocytes. Major sites of expression of defensins 5 and 6 are Paneth cells of human small intestine. So far, only one structure of human alpha-defensin (HNP3) has been reported, and the properties of the intestine defensins 5 and 6 are particularly poorly understood. In this report, we present the high-resolution X-ray structures of three human defensins, 4 through 6, supplemented with studies of their antimicrobial and chemotactic properties. Despite only modest amino acid sequence identity, all three defensins share their tertiary structures with other known alpha- and beta-defensins. Like HNP3 but in contrast to murine or rabbit alpha-defensins, human defensins 4-6 form characteristic dimers. Whereas antimicrobial and chemotactic activity of HNP4 is somewhat comparable to that of other human neutrophil defensins, neither of the intestinal defensins appears to be chemotactic, and for HD6 also an antimicrobial activity has yet to be observed. The unusual biological inactivity of HD6 may be associated with its structural properties, somewhat standing out when compared with other human alpha-defensins. The strongest cationic properties and unique distribution of charged residues on the molecular surface of HD5 may be associated with its highest bactericidal activity among human alpha-defensins.  相似文献   

3.
Three-dimensional structure of RK-1: a novel alpha-defensin peptide   总被引:3,自引:0,他引:3  
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca(2+) channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta-sheet and a series of turns and is similar to the known structures of other alpha-defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.  相似文献   

4.
To elucidate the structural features of the mussel defensin MGD1 required for antimicrobial activity, we synthesized a series of peptides corresponding to the main known secondary structures of the molecule and evaluated their activity towards Gram-positive and Gram-negative bacteria, and filamentous fungi. We found that the nonapeptide corresponding to residues 25-33 of MGD1 (CGGWHRLRC) exhibited bacteriostatic activity once it was cyclized by a non-naturally occurring disulfide bridge. Longer peptides corresponding to the amino acid sequences of the alpha-helical part or to the beta-strands of MGD1 had no detectable activity. The bacteriostatic activity of the sequence 25-33 was strictly dependent on the bridging of Cys25 and Cys33 and was proportional to the theoretical isoelectric point of the peptide, as deduced from the variation of activity in a set of peptide analogues of the 25-33 sequence with different numbers of cationic charges. By using confocal fluorescence microscopy, we found that the cyclic peptides bound to Gram-positive bacteria without apparent lysis. However, by using a fluorescent dye, we observed that dead bacteria had been permeated by the cyclic peptide 25-33. Sequence comparisons in the family of arthopod defensins indicate that MGD1 belongs to a subfamily of the insect defensins, characterized by the constant occurrence of both positively charged and hydrophobic amino acids in the loop. Modelling studies showed that in the MGD1 structure, positively charged and hydrophobic residues are organized in two layered clusters, which might have a functional significance in the docking of MGD1 to the bacterial membrane.  相似文献   

5.
Tachycitin is an invertebrate chitin-binding protein with an amidated C-terminus, and possesses antimicrobial activity against both fungi and bacteria. The (1)H-NMR-based tertiary structure of tachycitin was recently determined [Suetake et al. (2000) J. Biol. Chem., 275, 17929-17932]. In order to examine the structural and functional features of tachycitin more closely, we performed for the first time, gene expression, refolding, (15)N-NMR-based characterizations, and antimicrobial activity measurements of a recombinant tachycitin (rTcn) that does not have the amide group at the C-terminus. The NMR analysis indicated that rTcn possesses the same structural construction as the native tachycitin. The backbone (15)N relaxation measurements showed that the molecular motional correlation time of rTcn increases as its concentration increases, indicating that tachycitins have a tendency to aggregate with each other. rTcn exhibits antimicrobial activity against fungi but not against bacteria. The cell surface of fungi contains chitin as an essential constituent, but that of bacteria does not. These results suggest that not only the chitin-binding region but also the C-terminal amide group of tachycitin plays a significant role in its antimicrobial properties.  相似文献   

6.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.  相似文献   

7.
The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs.  相似文献   

8.
Antimicrobial peptides, or host defense peptides, are universal signaling and effector molecules in host defense and innate immunity. This article highlights various tools developed for cathelicidins and defensins, ranging from peptide identification, production, and structural biology, including the eight databases for antimicrobial peptides. Novel peptides can be identified from natural sources at both gene and protein levels. Solid-phase synthesis and bacterial expression are the two important methods for peptide production. Three-dimensional structures of antimicrobial peptides, primarily determined by solution NMR techniques, are essential for an in-depth understanding of the mode of action. The introduction of octanoyl phosphatidylglycerol as a bacterial membrane-mimetic model provides new insights into peptide-lipid interactions. The incorporation of structure and activity data into the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html) will lead to an integrated understanding of these peptides via structural bioinformatics.  相似文献   

9.
Scarabaecin isolated from hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros is a 36-residue polypeptide that has antifungal activity. The solution structure of scarabaecin has been determined from twodimensional 1H NMR spectroscopic data and hybrid distance geometry-simulated annealing protocol calculation. Based on 492 interproton and 10 hydrogen-bonding distance restraints and 36 dihedral angle restraints, we obtained 20 structures. The average backbone root-mean-square deviation for residues 4-35 is 0.728 +/- 0.217 A from the mean structure. The solution structure consists of a two-stranded antiparallel beta-sheet connected by a type-I beta-turn after a short helical turn. All secondary structures and a conserved disulfide bond are located in the C-terminal half of the peptide, residues 18-36. Overall folding is stabilized by a combination of a disulfide bond, seven hydrogen bonds, and numerous hydrophobic interactions. The structural motif of the C-terminal half shares a significant tertiary structural similarity with chitin-binding domains of plant and invertebrate chitin-binding proteins, even though scarabaecin has no overall sequence similarity to other peptide/polypeptides including chitin-binding proteins. The length of its primary structure, the number of disulfide bonds, and the pattern of conserved functional residues binding to chitin in scarabaecin differ from those of chitin-binding proteins in other invertebrates and plants, suggesting that scarabaecin does not share a common ancestor with them. These results are thought to provide further strong experimental evidence to the hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.  相似文献   

10.
Porcine β defensin 2 (pBD2) is a small, cationic and amphiphilic antimicrobial peptide. It has broad antimicrobial activities against bacteria and plays an important role in host defense. In order to enhance its antimicrobial activity and better understand the effect of positively charged residues on its activity, we substituted eight amino acid residues with arginine or lysine respectively. All mutants were cloned and expressed in BL21 (DE3) plysS and the mutant proteins were then purified. These mutant versions had higher positive charges but similar structural configurations compared to the wild-type pBD2. Moreover, these mutant proteins showed different antimicrobial activities against E. coli and S. aureus. The mutant I4R of pBD2 had the highest antimicrobial activity. In addition, all the mutants showed low hemolytic activities. Our results indicated that the positively charged residues were not the only factor that influenced antimicrobial activity, but other factors such as distribution of these residues on the surface of defensins might also contribute to their antimicrobial potency.  相似文献   

11.
Human beta-defensin-2 (hBD-2) is a small antimicrobial peptide with potent activity against different Gram-negative bacteria and fungal/yeast species. Since human beta-defensins and plant defensins share structural homology, we set out to analyse whether there also exists a functional homology between these defensins of different eukaryotic kingdoms. To this end, we constructed a plant transformation vector harbouring the hBD-2 coding sequence, which we transformed to Arabidopsis thaliana plants, giving rise to A. thaliana plants indeed expressing hBD-2. Furthermore, we could demonstrate that this heterologously produced hBD-2 possesses antifungal activity in vitro. Finally, we could show that hBD-2 expressing A. thaliana plants are more resistant against the broad-spectrum fungal pathogen Botrytis cinerea as compared to untransformed A. thaliana plants, and that this resistance is correlated with the level of active hBD-2 produced in these transgenic plants. Hence, we demonstrated a functional homology, next to the already known structural homology, between defensins originating from different eukaryotic kingdoms. To our knowledge, this is the first time that this is specifically demonstrated for plant and mammalian defensins.  相似文献   

12.
Five intestinal defensins, termed cryptdins 1-5, have been purified from mouse small bowel, sequenced, and localized to the epithelium by immunohistochemistry. Although identified as members of the defensin peptide family by peptide sequencing, enteric defensins are novel in that four cryptdins have amino termini which are three to six residues longer than those of leukocyte-derived defensins. A fifth cryptdin is the first defensin to diverge from the previously invariant spacing of cysteines in the peptide structure. The most abundant enteric defensin, cryptdin-1, had antimicrobial activity against an attenuated phoP mutant of Salmonella typhimurium but was not active against the virulent wild-type parent. Immunohistochemical localization demonstrated that cryptdin-1, and probably cryptdins 2 and 3, occur exclusively in Paneth cells, where the peptides appear to be associated with cytoplasmic granules. Biochemical and immunologic analysis of the luminal contents of the small intestine suggest that cryptdin peptides are secreted into the lumen, similar to Paneth cell secretion of lysozyme. The presence of several enteric defensins in the intestinal epithelium, evidence of their presence in the lumen, and the antibacterial activity of cryptdin-1 suggest that these peptides contribute to the antimicrobial barrier function of the small bowel mucosa.  相似文献   

13.
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.  相似文献   

14.
《Fungal Biology Reviews》2012,26(4):109-120
Plant defensins are small basic peptides that are inhibitory against a range of plant and human pathogens. Their in vitro antimicrobial activity and structural similarity with human and insect defensins indicated an important role for plant defensins in the innate immune system of plants. Regarding their mode of antimicrobial action, most plant defensins interact with a specific microbial surface receptor, resulting in microbial cell death via e.g. induction of apoptosis. However, accumulating evidence suggests additional in vivo functions of these plant defensins, and by extension of the more recently discovered defensin-like peptides, in general plant development. In this review we will discuss both, the functional roles of defensins in the plant and their modes of antimicrobial action.  相似文献   

15.
16.
Tachycitin, a 73-residue polypeptide having antimicrobial activity is present in the hemocyte of horseshoe crab (Tachypleus tridentatus). The first three-dimensional structure of invertebrate chitin-binding protein was determined for tachycitin using two-dimensional nuclear magnetic resonance spectroscopy. The measurements indicate that the structure of tachycitin is largely divided into N- and C-terminal domains; the former comprises a three-stranded beta-sheet and the latter a two-stranded beta-sheet following a short helical turn. The latter structural motif shares a significant tertiary structural similarity with the chitin-binding domain of plant chitin-binding protein. This result is thought to provide faithful experimental evidence to the recent hypothesis that chitin-binding proteins of invertebrates and plants are correlated by a convergent evolution process.  相似文献   

17.
《Fungal Biology Reviews》2013,27(4):109-120
Plant defensins are small basic peptides that are inhibitory against a range of plant and human pathogens. Their in vitro antimicrobial activity and structural similarity with human and insect defensins indicated an important role for plant defensins in the innate immune system of plants. Regarding their mode of antimicrobial action, most plant defensins interact with a specific microbial surface receptor, resulting in microbial cell death via e.g. induction of apoptosis. However, accumulating evidence suggests additional in vivo functions of these plant defensins, and by extension of the more recently discovered defensin-like peptides, in general plant development. In this review we will discuss both, the functional roles of defensins in the plant and their modes of antimicrobial action.  相似文献   

18.
Human β-defensin 3 (DEFB103) is a recently identified small cysteine-rich cationic peptide expressed ubiquitously upon local microbial invasion. A number of accumulating evidences indicate that this peptide is involved in many biological processes, including microbicidal activities, chemoattraction, and immunomodulation. In this article, we describe a novel approach through which we performed the expression and purification of the recombinant DEFB103 peptide in Escherichia coli (E. coli) based on the pTWIN1 expression system. This approach does not introduce any extra residues to the peptide product, and also eliminates the requirement of removing the fusion tag by exogenous proteases. A high yield of 112 mg of soluble fusion DEFB103 was obtained in 1 liter of Luria-Bertani (LB) medium. By one-step affinity chromatography and on-column, auto-cleavage of the fusion tag, the mature DEFB103 peptide was produced with a yield of 30 mg/L LB. The purified DEFB103 peptide demonstrated strong antimicrobial activities against E. coli, S. aureus and C. albicans, which were representatives of Gram-negative and Gram-positive bacteria and fungi, respectively. Using this novel approach, we have successfully expressed and purified several human defensins with significant bioactivities. Our work may be helpful for structural and functional studies of other human defensins, and also for the production of human defensins.  相似文献   

19.
20.
The solution structure of two homologous naturally occurring antimicrobial peptides, rabbit defensin NP-2 and human defensin HNP-1, have been determined by two-dimensional nuclear magnetic resonance spectroscopy, distance geometry, and restrained molecular dynamics calculations. The structure of these defensins consists of an antiparallel beta-sheet in a hairpin conformation, a short region of triple-stranded beta-sheet, several tight turns, and a loop region that has a well-defined local structure but with a global orientation that is not well-defined with respect to the rest of the molecule. The solution structures of these two peptides are compared with the solution and crystal structures of two other homologous defensins. The structures for the defensins are also compared with known structures of other naturally occurring antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号