首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Tangential (crossflow) filtration of a plasma/serum mixture through 0.2μm-poresize polycarbonate track-etch membrane filters (PC) at pressures < 10 psi removes low density lipoproteins (LDL) and very low density lipoproteins (VLDL) but not high density lipoproteins (HDL) from the filtrate. At pressures > 10 psi all lipoproteins pass through the PC. Once the filters have been intruded with LDL and VLDL those lipoproteins continue to pass the filters despite subsequent reduction in differential pressure below 10 psi.  相似文献   

2.
The order of phosphatidylcholine (PC) acyl chains in the surface monolayer of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) has been determined from 2H nuclear magnetic resonance order parameters, SCD, using selectively deuterated PC or palmitic acids. From the computer simulated line shapes, we find two distinct phospholipid domains within the amphiphilic monolayer of both VLDL and LDL. In the more ordered domain of LDL, SCD was approximately 0.3 for the "plateau" chain region. The SCD values of VLDL particles are similar to those of LDL for the 5,6- and 11,12-positions, hence we suggest the organization of the more ordered region of VLDL and LDL are similar. The domain of low order in LDL comprises less than 10% of the phospholipid molecules (we do not distinguish between PC and sphingomyelin), having approximately the same order (SCD less than 0.1) as egg PC - sphingomyelin unilamellar vesicles. In VLDL, the domain of low order comprises between approximately 10 and approximately 20% of the phospholipid molecules and the entire acyl chain is in an essentially isotropic environment (SCD less than 0.02). We prepared VLDL-sized microemulsions composed of egg PC, deuterated PC, and triolein to test whether the apoproteins were responsible for creating the two differently organized domains in VLDL and LDL. Surprisingly, these protein-free particles also showed two domains of different order at two temperatures. The high order region, however, is less ordered than in VLDL and LDL. We explain two surface domains of PC in terms of lipid organization and the unique interactions of lipids in the various lipoprotein particles.  相似文献   

3.
在兔主动脉平滑肌细胞 ( SMC)培养基中分别加入正常低密度脂蛋白 ( N- LDL)、氧化低密度脂蛋白 ( ox- LDL)、正常极低密度脂蛋白 ( N- VLDL)、氧化极低密度脂蛋白 ( ox- VLDL)和 β-极低密度脂蛋白 (β- VLDL )培养 2 4 h后 ,用定量 RT- PCR和配体结合实验检测平滑肌细胞 LRP的m RNA和蛋白质水平的表达 .结果表明 :五种脂蛋白均能在转录和翻译水平诱导兔主动脉平滑肌细胞的 LRP表达 ,尤以富含胆固醇的 N- LDL ,ox- LDL和β- VLDL的刺激作用更明显 .用胆固醇单独或与脂蛋白共同温育 SMC后 ,发现胆固醇本身可促进 SMC的 LRP蛋白水平的表达 ,脂蛋白与胆固醇的共同刺激作用更为显著 .结果提示 :上述五种脂蛋白对 SMC上 LRP的表达有上调作用 ,其机制可能主要是通过其中的胆固醇来实现的 .  相似文献   

4.
To study the metabolic pathways of apolipoprotein B (apoB), a series of studies were carried out in which both radioiodinated very low density lipoproteins (VLDL) and tritiated leucine were simultaneously injected into three hypertriglyceridemic subjects. The appearance and disappearance of tritium activity in VLDL apoB, intermediate density lipoprotein (IDL) apoB, and low density lipoprotein (LDL) apoB were followed as was the disappearance of iodine activity from VLDL and the appearance and disappearance of iodine activity in IDL apoB and LDL apoB. It was found that a delipidation chain could describe the kinetics of both endogenously and exogenously labeled VLDL. A slow component of VLDL was necessary to fit the VLDL 131I-labeled apoB data and was consistent with the observed VLDL [3H]apoB kinetics. In addition, the estimated rate of conversion of VLDL apoB to LDL exceeded that which appeared to pass through the measured IDL pools, suggesting that a fraction of the IDL was not directly observed. It was also found that a higher percentage of VLDL 131I-labeled apoB was converted to LDL apoB than was VLDL [3H]apoB. To evaluate possible causes of this apparent anomaly, simultaneous examination of all kinetic data was performed. This exercise resulted in the resolution of removal pathways from multiple compartments in the VLDL delipidation chain and the conversion of slowly metabolized VLDL to IDL and LDL. The wide spectrum of this loss pathway indicates that previous estimates of VLDL apoB production rate using the radioiodinated methodology probably represent lower bounds for the true physiologic variable. It is important to note that these direct losses were apparent only when the combination of endogenous and exogenous labeling was used.  相似文献   

5.
1. Concentration and composition of the "very low density lipoproteins" (VLDL), "low density lipoproteins" (LDL) and "high density lipoproteins" (HDL) and of non-floatable lipids of fetal rat serum (day 22 of pregnancy) were determined by ultracentrifugation, thin-layer chromatographic separation of the floated lipids and quantitation of the lipid and protein moiety. 2. The concentration of VLDL is in the fetal rat by one order of magnitude lower, and that of LDL, 5fold higher than in the adult animal; the concentration of HDL in fetal serum amounts to 60% of the value of adult animals. 3. The composition of LDL and HDL of fetal serum does not differ from that in the serum of adult animals; in contrast, the fetal VLDL have a higher proportion of protein and cholesterol and a lower proportion of triglycerides than the VLDL of adult serum. The electrophoretic mobility of the fetal VLDL is lower than that of adult VLDL.  相似文献   

6.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

7.
1. The metabolism of apolipoprotein B (apoB) was investigated in pigs injected with [125I]very low density lipoproteins (VLDL) to determine to which extent the two distinct low density lipoprotein subclasses (LDL1 and LDL2) derive from VLDL. 2. The lipoproteins were isolated by density gradient ultracentrifugation and the transfer of radioactivity from VLDL into LDL1 and LDL2 apoB was measured. 3. Only a minor portion of VLDL apoB was converted to LDL1 (7.7 +/- 3.2%) and LDL2 (3.6 +/- 1.5%), respectively. Thus, we conclude that the major portion of LDL, especially LDL2, is synthesized independently from VLDL catabolism.  相似文献   

8.
Lecithin: Cholesterol Acyltransferase (LCAT) esterified relatively small amounts of cholesterol from very low density lipoproteins (VLDL), low density lipoproteins (LDL) or high density lipoproteins (HDL) in the presence of 5% human serum albumin (HSA). On the other hand, in the presence of very high density (>1.225 g/ml) plasma fraction (F-4), the enzyme esterified cholesterol from VLDL at considerably higher rates than from LDL or HDL. VLDL together with some component present in the very high density plasma fraction (F-4) may thus provide a highly efficient complex resulting in a favorable configuration of substrate lipids for the enzyme.  相似文献   

9.
The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31P NMR. Lateral diffusion coefficients, DT, obtained from the viscosity dependence of the 31P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL2, HDL3), and egg PC/TO microemulsions at 25 degrees C, for VLDL at 40 degrees C, and for LDL at 45 degrees C. At 25 degrees C, the rate of lateral diffusion in LDL (DT = 1.4 x 10(-9) cm2/s) is an order of magnitude slower than in the HDLs (DT = 2 x 10(-8) cm2/s). At 45 degrees C, DT for LDL increases to 1.1 x 10(-8) cm2/s. In contrast, DT for VLDL increases only slightly going from 25 to 40 degrees C. The large increase in diffusion rate observed in LDL occurs over the same temperature range as the smectic to disordered phase transition of the core cholesteryl esters, and provides evidence for direct interactions between the monolayer and core. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, delta sigma, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence of the 31P NMR line widths. For VLDL and LDL, the anisotropy is 47-50 ppm at 25 degrees C, in agreement with data from phospholipid bilayers. For the HDLs, however, significantly larger values of 69-75 ppm (HDL2) and greater than 120 ppm (HDL3) were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We characterized the lipoproteins produced by perfused rat liver in recirculating and non-recirculating systems. The apolipoprotein (apo) B of the perfusate very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were labeled with a radioactive precursor amino acid in both systems, suggesting that newly synthesized apo B was secreted in association with VLDL and LDL. When the lipoproteins obtained from the non-recirculating perfusate were injected into rats in vivo, the half life of the VLDL was 13 min and most of it was converted to LDL, while that of the LDL was 5.2 h, indicating that the perfusate LDL was different from the VLDL with respect to its metabolic fate. These observations suggest that both VLDL and LDL are produced as independent primary products in the liver, although the majority of LDL is derived from VLDL in vivo. The nascent lipoproteins in the non-recirculating perfusate were richer in apo E than those in the recirculating perfusate, and a part of the apo E disappeared when the VLDL was added to the recirculating perfusate. The particle sizes of the VLDL and LDL were examined by electron microscopy, which revealed that those in the non-recirculating perfusate were more homogeneous and smaller than the plasma counterparts, while those in the recirculating perfusate were more heterogeneous and their mean diameter was closer to that of the plasma lipoproteins, than in the case of non-recirculating perfusate. These observations suggest that apo E secreted with the nascent lipoproteins may be picked up by the liver just after secretion, causing the heterogeneity in size, as observed in the case of plasma lipoproteins.  相似文献   

11.
Very low density lipoproteins (VLDL), Sf60 to 400, from normolipemic individuals do not suppress 3-hydroxy-3-methylglutaryl-CoA reductase activity in cultured normal human fibroblasts at concentrations 20-fold higher than those of low density lipoproteins (LDL) that give total suppression. To determine if these VLDL contain all of the structural elements necessary for receptor-mediated suppression, they were converted in vitro with bovine milk lipoprotein lipase to low density lipoproteins. These LDL-like lipoproteins were as effective in suppression as LDL isolated directly from plasma, with half-maximal and complete suppression at 1 and 4 microgram of cholesterol ml-1. Neither native LDL nor LDL produced in vitro suppressed receptor-negative fibroblasts. We conclude that action of lipoprotein lipase on VLDL leads to a rearrangement of lipoprotein components that permits interaction of LDL produced in vitro with the LDL-specific cell surface receptor of fibroblasts and subsequent suppression of 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

12.
To determine the metabolic mechanism of hypercholesterolemia in rabbits produced by feeding cholesterol-rich diets, control and hypercholesterolemic rabbits were injected with I-labelled very low density lipoproteins (VLDL, d 1.006 g/ml) from control and/or hypercholesterolemic donors. Apolipoprotein B in VLDL decayed biphasically. The first phase occurred much more rapid than the second. 95% of the VLDL apolipoprotein B was catabolized via the first phase (t1/2 = 0.55 +/- 0.19 h) in normal rabbit with the immediate appearance of this radioactivity in intermediate density lipoproteins (IDL, d 1.006-1.025 g/ml) and low density lipoproteins (LDL, d 1.025-1.063 g/ml). The apolipoproteins C and E at the same time were transferred to high density lipoproteins where they decayed biphasically. The apolipoprotein B from hypercholesterolemic VLDL in the normal recipient disappeared at a similar rate as from normal VLDL via phase I; however, it was incompletely converted to IDL and LDL. Apolipoprotein B from normal VLDL in cholesterol-fed rabbits disappeared at a normal rate via phase I, but only 82% was catabolized by this phase. Hypercholesterolemic VLDL injected into the hypercholesterolemic recipient was less rapidly catabolized via phase I (T1/2 = 2.5 +/- 0.89 H) and only a small fraction was converted to IDL and LDL.  相似文献   

13.
1. We have compared the concentration and chemical composition of carp and human plasma lipoproteins and studied their interaction with human fibroblast LDL receptors. 2. The main lipoproteins in carp are of high density (HDL) in contrast to low density lipoproteins (LDL) in human. 3. Carp lipoproteins are devoid of apolipoprotein (apo) E, a major ligand for interaction with LDL receptors in mammals. 4. Carp very low density lipoproteins (VLDL) and LDL but not HDL nor apoA-I cross react with human LDL in their interaction with LDL receptors on human cultured fibroblasts. 5. Carp liver membranes possess high affinity receptors that are saturable and have calcium dependent ligand specificity (apoB and apoE) similar to human LDL receptor. Carp VLDL and LDL but not HDL nor its major apolipoprotein complexed to L-alpha-phosphatidylcholine dimyristoyl (apoA-I-DMPC) competed with the specific binding of human LDL to this receptor.  相似文献   

14.
The effect on rats fed on a diet with 15% solid frying fat (diet B) is compared to the effect of a diet with 15% of the same fat but in the raw state (diet A). After 10 weeks being fed on these diets serum triglycerides, phospholipids, total cholesterol, free cholesterol, esterified cholesterol, high density lipoprotein-cholesterol and free fatty acid levels were checked. Percentage of very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins as well as the composition of these lipoproteins was determined in parallel. Rats fed on diet B showed a significant increase in phospholipids and a significant decrease in VLDL when compared to those fed on diet A. Phospholipids on LDL decreased significantly in diet B fed rats. The data obtained seem to indicate that the hypercholesterolemic tendency induced by frying fat is neutralized by a decrease in VLDL levels.  相似文献   

15.
The properties of human plasma very low density lipoproteins (VLDL), low density lipoproteins (LDL), and their extracted lipids were compared using calorimetric, X-ray scattering, and polarizing microscopy techniques. Intact LDL, and cholesterol esters isolated from LDL and VLDL each undergo reversible changes in their physical state around body temperature. These transitions are associated with ordered liquid crystalline to liquid phase changes of the cholesterol esters. In contrast to LDL, VLDL has no reversible transitions and shows no evidence of ordered liquid crystalline structures between 10 and 45 degrees C. Therefore, unlike LDL, VLDL does not contain a separate cholesterol ester region capable of undergoing cooperative melting. Solubility studies at 37 degrees C of cholesterol esters and triglyceride isolated from VLDL show that even at a weight ratio of 1:1, which greatly exceeds the relative amount of cholesterol esters in VLDL, cholesterol ester is completely soluble in triglyceride. Thus, the cholesterol ester in VLDL is not sequestered in a separate domain within VLDL, but is dissolved in the liquid core of the particle.  相似文献   

16.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

17.
The contribution of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) to various low density lipoprotein (LDL) subfractions was examined in three normal subjects and two with familial combined hyperlipidemia. Autologous VLDL + IDL (d less than 1.019 g/ml) or VLDL only (d less than 1.006 g/ml; one subject only) were isolated by sequential ultracentrifugation, iodinated, and injected into each subject. The appearance, distribution, and subsequent disappearance of radioactivity into LDL density subpopulations was characterized using density gradient ultracentrifugation. These techniques help determine the contribution of precursors to various LDL subpopulations defined uniquely for each subject. The results from these studies have suggested: 1) it took up to several days of intravascular processing of precursor-derived LDL before it resembled the distribution of the 'steady-state' plasma LDL protein; 2) plasma VLDL and IDL precursors contributed rapidly to a broad density range of LDL; 3) the radiolabeled plasma precursors did not always contribute to all LDL density subfractions within an individual in proportion to their relative LDL protein mass as determined by density gradient ultracentrifugation; 4) with time, the distribution of the precursor-derived LDL became more buoyant or more dense than distribution of the LDL protein mass; and 5) the kinetic characteristics of precursor-derived particles within LDL changed within a relatively narrow density range and were not always related to the LDL density heterogeneity of each subject. These studies emphasize the complexities of apoB metabolism and the need to design studies to carefully examine the production of various LDL subpopulations, the kinetic fate and interconversions among the subpopulations, and ultimately, their relationship to the development of atherosclerosis.  相似文献   

18.
We have studies the secondary structures of the protein moieties of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) of human serum by circular dichroism (CD). Two potential complications in the application of this technique to lipoproteins have been evaluated. First, using chronographic potentiometry in CD measurements of VLDL fractions of different mean particle diameters, we have analyzed statistically the CD signals in order to define the limits imposed by light scattering with respect to both particle diameter and wavelength. We found that CD measurements can be made to as low as 210 nm on particles of 520 A or smaller, and to 194 nm on particles of 450 A and below. Second, we have evaluated the CD contribution of lipid chromophores. Despite the high ratio of lipid to protein, the relative CD effect of the lipids is smaller than for low density lipoproteins (LDL). due to the extremely small ellipticity of natural VLDL triglycerides. Thus, CD measurements can be obtained with confidence on the preponderant bulk of normal VLDL. For the first time we report the CD spectra of human VLDL and IDL. In contrast with human LDL and the lipoproteins of the hypercholesterolemic rabbit, the entire CD SPECTRUM OF HUMAN VLDL shows increased ellipticity with decreasing temperature, which is completely reversible. We have found that the protein moieties of human VLDL and IDL contain substantially more helix (approximately 50%) than does that of human LDL.  相似文献   

19.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

20.
When [3H]cholesteryl ester-labeled low density (LDL) and intermediate density lipoproteins (IDL) from a normotriglyceridemic, hypercholesterolemic rabbit were injected into severely hypertriglyceridemic, hypercholesterolemic rabbits, 60% of the label appeared in very low density lipoproteins (VLDL) at 3 hr. A similar experiment showed that 40% of injected 131I-protein-labeled LDL appeared in the IDL fraction at 4 hr. Taken together, these data suggest that the exchange of LDL cholesteryl ester for VLDL triglyceride results in a density shift of injected LDL to the IDL density range. Furthermore, the percent of injected 131I-labeled LDL from normotriglyceridemic rabbits that appeared in the IDL fraction increased in rabbits with increasing levels of plasma triglyceride. This LDL density shift was reproduced in vitro by incubating iodinated LDL from normotriglyceridemic, hypercholesterolemic rabbits with concentrations of VLDL from hypertriglyceridemic, hypercholesterolemic rabbits similar to those in plasma. With such a system, it was shown that the percentage of LDL that appeared in the IDL fraction increased with time, was enhanced fourfold by the addition of plasma lipid transfer protein, increased with increasing molar ratio of triglyceride to cholesteryl ester in VLDL, but apparently did not increase with increasing VLDL particle number. These studies suggest that a pronounced decrease in density of lipoproteins that would normally appear in the LDL density range, resulting from loss of cholesteryl ester in exchange for VLDL triglyceride, may explain, at least in part, the reduced LDL levels in severe hypertriglyceridemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号