首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of cytokinins for the progression of the cell cycle is well known. Cytokinins contribute to the control of the expression of D-cyclins and other cell cycle genes, but knowledge as to how they affect the progression of the cell cycle is still limited. Highly synchronized tobacco BY-2 cells with clearly defined cell cycle stages were employed to determine cytokinin patterns in detail throughout the entire cycle. Concentrations of trans-zeatin, and of some other cytokinins, oscillated during the course of the cell cycle, increasing substantially at all four phase transitions and decreasing again to a minimum value during the course of each subsequent phase. Addition of exogenous cytokinins or inhibition of cytokinin biosynthesis promoted the progression of the cell cycle when the effects of these manipulations intensified the endogenous fluctuations, whereas the progression of the cycle was retarded when the amplitude of the fluctuations was decreased. The results show that the attainment of low concentrations of cytokinins is as important as the transient increases in concentration for a controlled progression from one phase of the cell cycle to the next. Cytokinin oxidase/dehydrogenase activity also showed fluctuations during the course of the cell cycle, the timing of which could at least partly explain oscillations of cytokinin levels. The activities of the enzyme were sufficient to account for the rates of cytokinin disappearance observed subsequent to a phase transition.  相似文献   

2.
Summary Tobacco BY-2 cells have become a major tool in plant cell biological research, in part due to the availability of a cell cycle synchronization protocol. This method, pioneered by Nagata and coworkers, involves sequential treatments with aphidicolin (a DNA synthesis inhibitor) and propyzamide (a microtubule inhibitor which arrests mitosis). The effects of these inhibitors are reversible, allowing the cell culture to progress into M phase synchronously. However, attempts to reproduce high levels of synchrony with published protocols have not been uniformly successful. This paper describes critical parameters for cell cycle synchronization and documents the kinetics and variation typically found in using this protocol.  相似文献   

3.
Telomerase is a specialized RNA-directed DNA polymerase that adds telomeric repeats onto the ends of linear eukaryotic chromosomes. It was recently reported that the low, basal level of telomerase activity markedly increased at early S-phase of the cell cycle, and auxin further increased the S-phase-specific telomerase activity in tobacco BY-2 cells. In this study we show that abscisic acid (ABA), a phytohormone known to induce the cyclin-dependent protein kinase inhibitor, effectively abolished both the auxin- and S-phase-specific activation of telomerase in a concentration- and time-dependent fashion in synchronized tobacco BY-2 cells. These results suggest that there exists a hormonal cross-talk between auxin and ABA for the regulation of telomerase activity during the cell cycle of tobacco cells. Treatment of synchronized BY-2 cells with the protein kinase inhibitor staurosporine or H-7 effectively prevented the S-phase-specific activation of telomerase activity. By contrast, when okadaic acid or cantharidin, potent inhibitors of protein phosphatase 2A (PP2A), was applied to the cells, the S-phase-specific high level of telomerase activity was continuously maintained in the cell cycle for at least 14 h after release from M-phase arrest. Incubation of tobacco cell extracts with exogenous PP2A rapidly abrogated in vitro telomerase activity, while okadaic acid and cantharidin blocked the action of PP2A, effectively restoring in vitro telomerase activity. Taken together, these findings are discussed in the light of the suggestion that antagonistic functions of auxin and ABA, and reciprocal phosphorylation and dephosphorylation of telomerase complex, are necessarily involved in the cell cycle-dependent modulation of telomerase activity in tobacco cells.  相似文献   

4.
The character of programmed cell death (PCD) in plants differs in connection with the context, triggering factors and differentiation state of the target cells. To study the interconnections between cell cycle progression and cell death induction, we treated synchronized tobacco BY-2 cells with cadmium ions that represent a general abiotic stressor influencing both dividing and differentiated cells in planta. Cadmium induced massive cell death after application in all stages of the cell cycle; however, both the progression and the forms of the cell death differed pronouncedly. Apoptosis-like PCD induced by cadmium application in the S and G2 was characterized by pronounced internucleosomal DNA fragmentation. In contrast, application of cadmium in M and G1 phases was not accompanied by DNA cleavage, indicating suppression of autolysis and non-programmed character of the death. We interpret these results in the context of the situation in planta, where the induction of apoptosis-like PCD in the S and G2 phase might be connected with a need to preserve genetic integrity of dividing meristematic cells, whereas suppression of PCD response in differentiated cells (situated in G1/G0 phase) might help to avoid death of the whole plant, and thus enable initiation of the recovery and adaptation processes.  相似文献   

5.
S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.  相似文献   

6.
Caffeine induced a mitosis-like state in cultured tobacco (Nicotiana tabacum L.) BY-2 cells after DNA synthesis had been arrested by aphidicolin. Cells were synchronized upon removal of aphidicolin. When aphidicolin was readded, the cell cycle was again interrupted and caffeine, when added with aphidicolin, induced the mitosis-like state in 5–10% of cells.  相似文献   

7.
Potassium ions (K+) are required for plant growth and development, including cell division and cell elongation/expansion, which are mediated by the K+ transport system. In this study, we investigated the role of K+ in cell division using tobacco BY-2 protoplast cultures. Gene expression analysis revealed induction of the Shaker -like outward K+ channel gene, NTORK1 , under cell-division conditions, whereas the inward K+ channel genes NKT1 and NtKC1 were induced under both cell-elongation and cell-division conditions. Repression of NTORK1 gene expression by expression of its antisense construct repressed cell division but accelerated cell elongation even under conditions promoting cell division. A decrease in the K+ content of cells and cellular osmotic pressure in dividing cells suggested that an increase in cell osmotic pressure by K+ uptake is not required for cell division. In contrast, K+ depletion, which reduced cell-division activity, decreased cytoplasmic pH as monitored using a fluorescent pH indicator, SNARF-1. Application of K+ or the cytoplasmic alkalizing reagent (NH4)2SO4 increased cytoplasmic pH and suppressed the reduction in cell-division activity. These results suggest that the K+ taken up into cells is used to regulate cytoplasmic pH during cell division.  相似文献   

8.
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.  相似文献   

9.
The interplay between nitric oxide (NO) and reactive oxygen species can lead to an induction of cell death in plants. The aim of our work was to find out if cyanide released from sodium nitroprusside (SNP; a donor of NO) could be involved in the cell death induction, which is triggered by SNP and H2O2. Cell suspension of Nicotiana tabacum L. (line BY-2) was treated with 0.5 mM SNP, 0.5 mM potassium ferricyanide (PFC; analogue of sodium nitroprusside which can not release NO) and/or by 0.5 mM glucose with 0.5 U cm−3 glucose oxidase (GGO; a donor system of H2O2). The cell death was induced only by combination of SNP and GGO. Thus cyanide released was not involved in the induction of cell death. However, SNP showed toxic effect because of decrease in activities of intracellular oxidoreductases and esterases. The cell death caused by SNP and GGO occurred within 12 h. During cell death either length or width of the cell increased. Central vacuole was formed in 20 to 40 % of cells. Most of the dead cells showed a condensed cytoplasm. Two hallmarks of programmed cell death (PCD), chromatin condensation and blebbing of nuclear periphery, were observed. However, oligonucleosomal fragmentation of DNA, another hallmark of PCD, was not detected.  相似文献   

10.
11.
The replacement of crude allergen extracts by selected allergens currently represents a major goal for the improvement of allergy diagnosis and immunotherapy. Indeed, the development of molecularly defined vaccines would facilitate both standardization and enhance batch-to-batch reproducibility as well as treatment specificity. In this study, we have investigated the potential of tobacco plant cells to produce biologically active forms of the two major allergens from the house dust mite. A detailed characterization of these plant-made allergens has shown similar proteolytic maturation and folding as well as comparable immunoreactivity to their natural counterparts. Altogether, our results exemplify that suspension-cultured BY-2 tobacco cells represent a low cost and environmentally safe expression system suitable to produce recombinant allergens from Dermatophagoides pteronyssinus under a form appropriate for diagnostic and therapeutic purposes.  相似文献   

12.
Yu Y  Wang HY  Liu LN  Chen ZL  Xia GX 《Plant cell reports》2007,26(7):889-894
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis. More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators controlling cell separation at the late stage of BY-2 cell division. Yi Yu and Hai-Yun Wang contributed equally to this work.  相似文献   

13.
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM7 [corrected]) cells. At 5 microM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM7 [corrected] osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16alpha-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a 'loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells.  相似文献   

14.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   

15.
S. Sonobe  N. Nakayama  T. Shimmen  Y. Sone 《Protoplasma》2000,213(3-4):218-227
Summary Immunofluorescence microscopy using an antibody against xyloglucan (XG) revealed its dynamics during the cell cycle. In interphase tobacco BY-2 cells, punctate and scattered fluorescence was observed throughout the cytoplasm. Colocalization of such signals with cortical microtubules (MTs) was clearly observed on the membrane ghosts. They were also associated and accumulated on MT bundles of the preprophase band. Treatment of protoplasts with cytochalasin B prior to the preparation of the ghosts had no effect on the pattern of anti-XG staining, while treatment with propyzamide caused the disappearance of the staining. These results suggest an association of Golgi apparatus and/or Golgi-derived vesicles with MTs. In metaphase cells, the staining was dispersed in the cytoplasm, except in the area occupied by the metaphase spindle. During anaphase, a broad fluorescence band appeared between daughter chromosomes and gradually concentrated at the equatorial plane before formation of the phragmoplast. At telophase, a bright line of fluorescence appeared at the equatorial plane corresponding to the position of the cell plate. The length of the line increased as cytokinesis proceeded. Thus, we showed that immunofluorescence microscopy using anti-XG antibody can be considered as a powerful tool for the analysis of Golgi apparatus and Golgi-derived vesicles containing XG.  相似文献   

16.
Immunoblot analysis with antibodies prepared against highly purified recombinant truncated kinesin-like proteins, KatB(5–249) and KatC(207–754), encoded by the katB and katC genes of Arabidopsis thaliana revealed the presence of a kinesin-like polypeptide, termed KatB/C, in cultured tobacco BY-2 cells. The KatB/C polypeptide cosedimented with microtubules in the presence of a nonhydrolyzable ATP analogue and was released from microtubules in the presence of ATP, both of which are characteristics of kinesin proteins. The amount of KatB/C polypeptide in synchronous BY-2 cells increased during M phase of the cell cycle. Microtubule-based structures present in cells at M phase, such as the spindle and phragmoplast, may be the site of action of the KatB/C protein.  相似文献   

17.
Under specific experimental conditions, the formation of oblique cell plates was observed in tobacco BY-2 cells. Examination of this process, using an inverted microscope and immunofluorescence microscopy, revealed that the oblique cell plates were formed in cells that had double preprophase bands (PPBs). The formation of the oblique cell plates is discussed with a relationship to PPBs.  相似文献   

18.
The mitotic inducer gene from Schizosaccharomyces pombe, Spcdc25, was used as a tool to investigate regulation of G2/M in higher plants using the BY-2 (Nicotiana tabacum) cell line as a model. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size through a shortening of the G2 phase. The cells often formed isodiametric double files both in BY-2 cells and in cell suspensions derived from 35S::Spcdc25 tobacco plants. In Spcdc25-expressing cells, the tobacco cyclin-dependent kinase, NtCDKB1, showed high activity in early S phase, S/G2 and early M phase, whereas in empty vector cells CDKB1 activity was transiently high in early S phase but thereafter remained lower. Spcdc25-expressing cells also bypassed a block on G2/M imposed by the cytokinin biosynthetic inhibitor lovastatin (LVS). Surprisingly, cytokinins were at remarkably low levels in Spcdc25-expressing cells compared with the empty vector, explaining why these cells retained mitotic competence despite the presence of LVS. In conclusion, synchronised Spcdc25-expressing BY-2 cells divided prematurely at a small cell size, and they exhibited premature, but sustained, CDKB1 activity even though endogenous cytokinins were virtually undetectable.  相似文献   

19.
Disintegration of the vacuolar membrane (VM) has been proposed to be a crucial event in various types of programmed cell death (PCD) in plants. However, its regulatory mechanisms are mostly unknown. To obtain new insights on the regulation of VM disintegration during hypersensitive cell death, we investigated the structural dynamics and permeability of the VM, as well as cytoskeletal reorganization during PCD in tobacco BY-2 cells induced by a proteinaceous elicitor, cryptogein. From sequential observations, we have identified the following remarkable events during PCD. Stage 1: bulb-like VM structures appear within the vacuolar lumen and the cortical microtubules are disrupted, while the cortical actin microfilaments are bundled. Simultaneously, transvacuolar strands including endoplasmic microtubules and actin microfilaments are gradually disrupted and the nucleus moves from the center to the periphery of the cell. Stage 2: cortical actin microfilament bundles and complex bulb-like VM structures disappear. The structure of the large central vacuole becomes simpler, and small spherical vacuoles appear. Stage 3: the VM is disintegrated and a fluorescent dye, BCECF, leaks out of the vacuoles just prior to PCD. Application of an actin polymerization inhibitor facilitates both the disappearance of bulb-like vacuolar membrane structures and induction of cell death. These results suggest that the elicitor-induced reorganization of actin microfilaments is involved in the regulation of hypersensitive cell death via modification of the vacuolar structure to induce VM disintegration.  相似文献   

20.
Ca(2+) is the pivotal second messenger for induction of defense responses induced by treatment of pathogen-derived elicitor or microbial infection in plants. However, molecular bases for elicitor-induced generation of Ca(2+) signals (Ca(2+) transients) are largely unknown. We here identified cDNAs for putative voltage-dependent Ca(2+)-permeable channels, NtTPC1A and NtTPC1B, that are homologous to TPC1 (two pore channel) from suspension-cultured tobacco BY-2 cells. NtTPC1s complemented the growth of a Saccharomyces cerevisiae mutant defective in CCH1, a putative Ca(2+) channel, in a low Ca(2+) medium, suggesting that both products permeate Ca(2+) through the plasma membrane. Cosuppression of NtTPC1s in apoaequorin-expressing BY-2 cells resulted in inhibition of rise in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in response to sucrose and a fungal elicitor cryptogein, while it did not affect hypoosmotic shock-induced [Ca(2+)](cyt) increase. Cosuppression of NtTPC1s also caused suppression of cryptogein-induced programmed cell death and defense-related gene expression. These results suggest that NtTPC1s are involved in Ca(2+) mobilization induced by the cryptogein and sucrose, and have crucial roles in cryptogein-induced signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号