首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Kuo L  Masters PS 《Journal of virology》2002,76(10):4987-4999
The coronavirus membrane (M) protein is the most abundant virion protein and the key component in viral assembly and morphogenesis. The M protein of mouse hepatitis virus (MHV) is an integral membrane protein with a short ectodomain, three transmembrane segments, and a large carboxy-terminal endodomain facing the interior of the viral envelope. The carboxy terminus of MHV M has previously been shown to be extremely sensitive to mutation, both in a virus-like particle expression system and in the intact virion. We have constructed a mutant, M(Delta)2, containing a two-amino-acid truncation of the M protein that was previously thought to be lethal. This mutant was isolated by means of targeted RNA recombination with a powerful host range-based selection allowed by the interspecies chimeric virus fMHV (MHV containing the ectodomain of the feline infectious peritonitis virus S protein). Analysis of multiple second-site revertants of the M(Delta)2 mutant has revealed changes in regions of both the M protein and the nucleocapsid (N) protein that can compensate for the loss of the last two residues of the M protein. Our data thus provide the first genetic evidence for a structural interaction between the carboxy termini of the M and N proteins of MHV. In addition, this work demonstrates the efficacy of targeted recombination with fMHV for the systematic genetic analysis of coronavirus structural protein interactions.  相似文献   

2.
The coronavirus spike protein (S) forms the distinctive virion surface structures that are characteristic of this viral family, appearing in negatively stained electron microscopy as stems capped with spherical bulbs. These structures are essential for the initiation of infection through attachment of the virus to cellular receptors followed by fusion to host cell membranes. The S protein can also mediate the formation of syncytia in infected cells. The S protein is a type I transmembrane protein that is very large compared to other viral fusion proteins, and all except a short carboxy-terminal segment of the S molecule constitutes the ectodomain. For the prototype coronavirus mouse hepatitis virus (MHV), it has previously been established that S protein assembly into virions is specified by the carboxy-terminal segment, which comprises the transmembrane domain and the endodomain. We have genetically dissected these domains in the MHV S protein to localize the determinants of S incorporation into virions. Our results establish that assembly competence maps to the endodomain of S, which was shown to be sufficient to target a heterologous integral membrane protein for incorporation into MHV virions. In particular, mutational analysis indicated a major role for the charge-rich carboxy-terminal region of the endodomain. Additionally, we found that the adjacent cysteine-rich region of the endodomain is critical for fusion of infected cells, confirming results previously obtained with S protein expression systems.  相似文献   

3.
The coronavirus membrane (M) protein carboxy tail interacts with the nucleocapsid during virus assembly. Previous studies demonstrated that the two terminal residues are important, and the charged residue (R227) in the penultimate position in the mouse hepatitis coronavirus (MHV) A59 M protein was suggested to participate in intermolecular interactions with negative charges in the nucleocapsid (N) protein. To determine the significance of the positive charge at position 227, we substituted the arginine with lysine (K), aspartic acid (D), glutamic acid (E), or alanine (A) and studied these by reverse genetics in the context of a MHV full-length infectious clone. Viruses with wild-type phenotype were readily recovered with the K or A substitutions. In contrast, negative-charge substitutions were not tolerated as well. In all recovered R227D viruses the negative charge was replaced with heterologous residues resulting from apparent template switching during negative-strand synthesis of subgenomic RNA 7. An additional second-site compensatory V202I substitution was present in some viruses. Recovered R227E viruses had second-site changes within the M protein carboxy tail that were partially compensatory. Significantly, most of the second site changes in the R227E mutant viruses were previously shown to compensate for the removal of negative charges in the N protein. Our results strongly indicate that a positive charge is not absolutely required. It is clear that other regions within the tail must also be involved in helping mediate interactions between the M protein and the nucleocapsid.  相似文献   

4.
The Alb4 mutant of the coronavirus mouse hepatitis virus (MHV) is both temperature sensitive and thermolabile owing to a deletion in the gene encoding its nucleocapsid (N) protein. The deletion removes 29 amino acids that constitute a putative spacer region preceding the carboxyl-terminal domain of the protein. As a step toward understanding the structure and function of the MHV N protein, we isolated multiple independent revertants of Alb4 that totally or partially regained the ability to form large (wild-type-sized) plaques at the nonpermissive temperature. The N proteins of these revertant viruses concomitantly regained the ability to bind to RNA in vitro at a temperature that was restrictive for RNA binding by Alb4 N protein. Sequence analysis of the N genes of the revertants revealed that each contained a single second-site point mutation that compensated for the effects of the deletion. All reverting mutations were clustered within a stretch of 40 amino acids centered some 80 residues on the amino side of the Alb4 deletion, within a domain to which the RNA-binding activity of N had been previously mapped. By means of a targeted RNA recombination method that we have recently developed, two of the reverting mutations were introduced into a wild-type MHV genomic background. The resulting recombinants were stable and showed no gross phenotypic differences from the wild type. A detailed analysis of one, however, revealed that it was at a selective disadvantage with respect to the wild type.  相似文献   

5.
The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and endodomain. To this aim, we used the virus-like particle (VLP) system that we developed earlier for the mouse hepatitis virus strain A59 (MHV-A59) and which we describe now also for the unrelated coronavirus feline infectious peritonitis virus (FIPV; strain 79-1146). Two chimeric MHV-FIPV S proteins were constructed, consisting of the ectodomain of the one virus and the transmembrane and endodomain of the other. These proteins were tested for their incorporation into VLPs of either species. They were found to assemble only into viral particles of the species from which their carboxy-terminal domain originated. Thus, the 64-terminal-residue sequence suffices to draw the 1308 (MHV)- or 1433 (FIPV)-amino-acid-long mature S protein into VLPs. Both chimeric S proteins appeared to cause cell fusion when expressed individually, suggesting that they were biologically fully active. This was indeed confirmed by incorporating one of the proteins into virions which thereby acquired a new host cell tropism, as will be reported elsewhere.  相似文献   

6.
7.
Coronavirus contains three envelope proteins, M, E and S, and a nucleocapsid, which consists of genomic RNA and N protein, within the viral envelope. We studied the macromolecular interactions involved in coronavirus assembly in cells infected with a murine coronavirus, mouse hepatitis virus (MHV). Coimmunoprecipitation analyses demonstrated an interaction between N protein and M protein in infected cells. Pulse-labeling experiments showed that newly synthesized, unglycosylated M protein interacted with N protein in a pre-Golgi compartment, which is part of the MHV budding site. Coimmunoprecipitation analyses further revealed that M protein interacted with only genomic-length MHV mRNA, mRNA 1, while N protein interacted with all MHV mRNAs. These data indicated that M protein interacted with the nucleocapsid, consisting of N protein and mRNA 1, in infected cells. The M protein-nucleocapsid interaction occurred in the absence of S and E proteins. Intracellular M protein-N protein interaction was maintained after removal of viral RNAs by RNase treatment. However, the M protein-N protein interaction did not occur in cells coexpressing M protein and N protein alone. These data indicated that while the M protein-N protein interaction, which is independent of viral RNA, occurred in the M protein-nucleocapsid complex, some MHV function(s) was necessary for the initiation of M protein-nucleocapsid interaction. The M protein-nucleocapsid interaction, which occurred near or at the MHV budding site, most probably represented the process of specific packaging of the MHV genome into MHV particles.  相似文献   

8.
Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed.  相似文献   

9.
We have recently described a method of introducing site-specific mutations into the genome of the coronavirus mouse hepatitis virus (MHV) by RNA recombination between cotransfected genomic RNA and a synthetic subgenomic mRNA (C. A. Koetzner, M. M. Parker, C. S. Ricard, L. S. Sturman, and P. S. Masters, J. Virol. 66:1841-1848, 1992). By using a thermolabile N protein mutant of MHV (Alb4) as the recipient virus and synthetic RNA7 (the mRNA for the nucleocapsid protein N) as the donor, we selected engineered recombinant viruses as heat-stable progeny resulting from cotransfection. We have now been able to greatly increase the efficiency of targeted recombination in this process by using a synthetic defective interfering (DI) RNA in place of RNA7. The frequency of recombination is sufficiently high that, with Alb4 as the recipient, recombinants can be directly identified without using thermal selection. The synthetic DI RNA has been used to demonstrate that the lesion in another temperature-sensitive and thermolabile MHV mutant, Alb1, maps to the N gene. Sequencing of the Alb1 N gene revealed two closely linked point mutations that fall in a region of the N molecule previously noted as being the most highly conserved region among all of the coronavirus N proteins. Analysis of revertants of the Alb1 mutant revealed that one of the two mutations is critical for the temperature-sensitive phenotype; the second mutation is phenotypically silent.  相似文献   

10.
Schmitt PT  Ray G  Schmitt AP 《Journal of virology》2010,84(24):12810-12823
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.  相似文献   

11.
Coronavirus-like particles morphologically similar to normal virions are assembled when genes encoding the viral membrane proteins M and E are coexpressed in eukaryotic cells. Using this envelope assembly assay, we have studied the primary sequence requirements for particle formation of the mouse hepatitis virus (MHV) M protein, the major protein of the coronavirion membrane. Our results show that each of the different domains of the protein is important. Mutations (deletions, insertions, point mutations) in the luminal domain, the transmembrane domains, the amphiphilic domain, or the carboxy-terminal domain had effects on the assembly of M into enveloped particles. Strikingly, the extreme carboxy-terminal residue is crucial. Deletion of this single residue abolished particle assembly almost completely; most substitutions were strongly inhibitory. Site-directed mutations in the carboxy terminus of M were also incorporated into the MHV genome by targeted recombination. The results supported a critical role for this domain of M in viral assembly, although the M carboxy terminus was more tolerant of alteration in the complete virion than in virus-like particles, likely because of the stabilization of virions by additional intermolecular interactions. Interestingly, glycosylation of M appeared not essential for assembly. Mutations in the luminal domain that abolished the normal O glycosylation of the protein or created an N-glycosylated form had no effect. Mutant M proteins unable to form virus-like particles were found to inhibit the budding of assembly-competent M in a concentration-dependent manner. However, assembly-competent M was able to rescue assembly-incompetent M when the latter was present in low amounts. These observations support the existence of interactions between M molecules that are thought to be the driving force in coronavirus envelope assembly.  相似文献   

12.
The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions.  相似文献   

13.
14.
The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.The assembly of coronaviruses is driven principally by homotypic and heterotypic interactions between the two most abundant virion proteins, the membrane protein (M) and the nucleocapsid protein (N) (14, 32). The M protein is a triple-spanning transmembrane protein residing in the virion envelope, which is derived from the cellular budding site, the endoplasmic reticulum-Golgi intermediate compartment. More than half of the M molecule, its carboxy-terminal endodomain, is situated in the interior of the virion, where it contacts the nucleocapsid (46, 50). Also found in the virion envelope is the spike protein (S), which, although crucial for viral infectivity, is not an essential participant in assembly. The other canonical component of the coronavirus envelope is the small envelope protein (E), the function of which is enigmatic. Some evidence suggests that the E protein does not make sequence-specific contacts with other viral proteins (27) but instead functions by modifying the budding compartment, perhaps as an ion channel (56, 57). Alternatively, or additionally, E could act in a chaperone-like fashion to facilitate homotypic interactions between M protein monomers or oligomers (4).The N protein is the only protein constituent of the helically symmetric nucleocapsid, which is located in the interior of the virion. Coronavirus N proteins are largely basic phosphoproteins that share a moderate degree of homology across all three of the phylogenetic groups within the family (29). Some time ago, we proposed a model that pictured the N protein as comprising three domains separated by two spacers (A and B) (40). This arrangement was originally inferred from a sequence comparison of the N genes of multiple strains of the prototypical group 2 coronavirus, mouse hepatitis virus (MHV), and its validity seemed to be reinforced by numerous sequences that later became available. Part of this model, the delineation of spacer B and the acidic, carboxy-terminal domain 3, has been well supported by subsequent work (22, 25, 41, 42). However, a wealth of recent, detailed structural studies of bacterially expressed domains of the N proteins of the severe acute respiratory syndrome coronavirus (SARS-CoV) and of infectious bronchitis virus (IBV) has much more precisely mapped boundaries within the remainder of the N molecule (8, 16, 21, 23, 47, 51, 60). The latter studies have shown that the N protein contains two independently folding domains, designated the N-terminal domain (NTD) and the C-terminal domain (CTD). It should be pointed out that this nomenclature can be misleading: the NTD does not contain the amino terminus of the protein, and the CTD does not contain the carboxy terminus of the protein. Specifically, the CTD does not include spacer B and domain 3. The NTD and the CTD are separated by an intervening serine- and arginine-rich region; this region was previously noted to resemble the SR domains of splicing factors (42), and it has recently been shown to be intrinsically disordered (6, 7).In the assembled virion, the three known partners of the N protein are the M protein, the genomic RNA, and other copies of the N protein itself. We have sought to develop genetic and molecular biological methods that will begin to elucidate the varied ways in which the N molecule interacts during MHV infection. We previously found that the fusion of N protein domain 3 to a heterologous marker, green fluorescent protein (GFP), results in incorporation of GFP into virions (22). In the present study, we similarly fused each of the individual domains of N to GFP, and we thereby uncovered two strong modes of N protein-N protein interaction that likely contribute to virion architecture.  相似文献   

15.
16.
17.
Due to the limited ultrastructural information about the coronavirion, little is known about the interactions acting at the interface between nucleocapsid and viral envelope. Knowing that subtle mutations in the carboxy-terminal endodomain of the M protein are already lethal, we have now probed the equivalent domain of the spike (S) protein by extending it terminally with a foreign sequence of 27 kDa: the green fluorescent protein (GFP). When expressed individually in murine cells, the S-GFP chimeric protein induced the formation of fluorescent syncytia, indicating that it was synthesized and folded properly, trimerized, and transported to the plasma membrane, where it exhibited the two key S protein functions, i.e., interaction with virus receptor molecules and membrane fusion. Incorporation into virus-like particles demonstrated the assembly competence of the chimeric spike protein. The wild-type S gene of mouse hepatitis coronavirus (MHV) was subsequently replaced by the chimeric construct through targeted recombination. A viable MHV-SGFP was obtained, infection by which could be visualized by the fluorescence induced. The efficiency of incorporation of the chimeric protein into particles was, however, reduced relative to that in wild-type particles which may explain, at least in part, the reduced infectivity produced by MHV-SGFP infection. We conclude that the incorporation of spikes carrying the large GFP moiety is apparently impaired by geometrical constraints and selected against during the assembly of virions. Probably due to this disadvantage, deletion mutants, having lost the foreign sequences, rapidly evolved and outcompeted the chimeric viruses during virus propagation. The fluorescent MHV-SGFP will now be a convenient tool to study coronaviral cell entry.  相似文献   

18.
Expression studies have shown that the coronavirus small envelope protein E and the much more abundant membrane glycoprotein M are both necessary and sufficient for the assembly of virus-like particles in cells. As a step toward understanding the function of the mouse hepatitis virus (MHV) E protein, we carried out clustered charged-to-alanine mutagenesis on the E gene and incorporated the resulting mutations into the MHV genome by targeted recombination. Of the four possible clustered charged-to-alanine E gene mutants, one was apparently lethal and one had a wild-type phenotype. The two other mutants were partially temperature sensitive, forming small plaques at the nonpermissive temperature. Revertant analyses of these two mutants demonstrated that the created mutations were responsible for the temperature-sensitive phenotype of each and provided support for possible interactions among E protein monomers. Both temperature-sensitive mutants were also found to be markedly thermolabile when grown at the permissive temperature, suggesting that there was a flaw in their assembly. Most significantly, when virions of one of the mutants were examined by electron microscopy, they were found to have strikingly aberrant morphology in comparison to the wild type: most mutant virions had pinched and elongated shapes that were rarely seen among wild-type virions. These results demonstrate an important, probably essential, role for the E protein in coronavirus morphogenesis.  相似文献   

19.
20.
Tan YW  Fang S  Fan H  Lescar J  Liu DX 《Nucleic acids research》2006,34(17):4816-4825
The N-terminal domain of the coronavirus nucleocapsid (N) protein adopts a fold resembling a right hand with a flexible, positively charged β-hairpin and a hydrophobic palm. This domain was shown to interact with the genomic RNA for coronavirus infectious bronchitis virus (IBV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Based on its 3D structure, we used site-directed mutagenesis to identify residues essential for the RNA-binding activity of the IBV N protein and viral infectivity. Alanine substitution of either Arg-76 or Tyr-94 in the N-terminal domain of IBV N protein led to a significant decrease in its RNA-binding activity and a total loss of the infectivity of the viral RNA to Vero cells. In contrast, mutation of amino acid Gln-74 to an alanine, which does not affect the binding activity of the N-terminal domain, showed minimal, if any, detrimental effect on the infectivity of IBV. This study thus identifies residues critical for RNA binding on the nucleocapsid surface, and presents biochemical and genetic evidence that directly links the RNA binding capacity of the coronavirus N protein to the viral infectivity in cultured cells. This information would be useful in development of preventive and treatment approaches against coronavirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号