首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

2.
Several niobium and tantalum compounds were prepared that contain either the diamidoamine ligand, [(3,4,5-F3C6H2NCH2CH2)2NMe]2− ([F3N2NMe]2−), or the triamidoamine ligand, [(3,5-Cl2C6H3NCH2CH2)3N]3− ([Cl2N2NMe]3−). The former include [F3N2NMe]TaCl3, [F3N2NMe]NbCl3, [F3N2NMe]TaMe3, [F3N2NMe]NbMe3, [(F3N2NMe)TaMe2][MeB(C6F5)3], [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(CH2-t-Bu)Cl2, [F3N2NMe]Ta(CH-t-Bu)(CH3), and [F3N2NMe]Ta(η2-C2H4)(CH2CH3). The latter include [Cl2N2NMe]TaCl2, [Cl2N2NMe]TaMe2, [Cl2N2NMe]Ta(η2-C2H4), and [Cl2N2NMe]Ta(η2-C2H2).X-ray diffraction studies were carried out on [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(η2-C2H4)(CH2CH3), and [Cl2N2NMe]TaMe2..  相似文献   

3.
The synthesis of CH2-CH2-NH and NH-CH2-CH2 internucleoside linkages are described. Antisense oligonucleosides containing these dimer modifications hybridized to the sense sequence. Furthermore incorporation of these backbone modifications enhanced the nuclease resistance of the antisense strand.  相似文献   

4.
Adding one equivalent of H2O2 to compounds of stoichiometry MoCl2(O)2(OPR3)2, OPR3 = OPMePh2 or OPPh3, leads to the formation of oxo-peroxo compounds MoCl2(O)(O2)(OPR3)2. The compound MoCl2(O)(O2)(OPMePh2)2 crystallized with an unequal disorder, 63%:37%, between the oxo and peroxo ligands, as verified by single-crystal X-ray diffractometry, and can be isolated in reasonable yields. MoCl2(O)(O2)(OPPh3)2, was not isolated in pure form, co-crystallized with MoCl2(O)2(OPPh3)2 in two ratios, 18%:82% and 12%:88%, respectively, and did not contain any disorder in the arrangement of the oxo and peroxo groups. These complexes accomplish the isomerization of various allylic alcohols. A mechanism of this reaction has been constructed based on 18O isotopic studies and involves exchange between the alcohol and metal bonded O atoms.  相似文献   

5.
The reaction of α-MgCl2 with boiling ethyl acetate affords MgCI2(CH3COOC2H5)2· (CH3COOC2H5), which is obtained as crystals suitable for X-ray analysis only from the mother liquor. M=315.5, orthorhombic, space group P21221 (No. 18), a=25.077(3), b=8.616(1), c=7.345(1) Å, V=1587.0(3) Å3, Z=4, Dx=1.32 g cm−3,λ A(Mo Kα)=0.71069 Å, μ=4.17 cm−1, F(000)=664, T=298 K, observed reflections: 1667, R=0.059 and Rw=0.069. The structure is composed of polymeric chains of MgCl2(CH3COOC2H5)2 and the ethyl acetate molecules occupy a mutually trans position.  相似文献   

6.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

7.
Refluxing WCl4(PMe3)3 under a nitrogen atmosphere in the presence of two equivalents of sodium amalgam leads to a reduction to the W(II) complex [cis,mer-WCl2(PMe3)3]2N2 (1), which can be converted to [mer,trans-WCl3(PMe3)2]2N2 (2) via appropriate oxidation/chlorination. Structural data have been obtained for both complexes, and demonstrate significantly increased steric crowding in 1 due to PMe3/PMe3 interactions. The N-N bond distances in the two compounds are similar, at 1.279(4) and 1.243(18) Å, respectively.  相似文献   

8.
The H2-antagonist cimetidine is widely employed in biochemical and pharmacological studies of the H2-receptor. These studies include the use of 3H-cimetidine in radioligand binding experiments. Confirming our previous finding as to the unsuitability of this ligand in these types of investigations, we now report data showing the lack of correlation between the displacement of specific 3H-cimetidine binding and histamine stimulated adenylate cyclase activity, and the displacement of specific binding by imidazoles devoid of H2-receptor activity. Results are also presented which question the use of copper ions in 3H-cimetidine binding studies. Our conclusions are discussed in relation to the work carried out by a number of laboratories where 3H-cimetidine is reported to label the H2-receptor.  相似文献   

9.
Reaction of tetrathiafulvalene carboxylic acid (TTFCO2H) with paddlewheel dirhodium complex Rh2(ButCO2)4 yielded TTFCO2-bridged complexes Rh2(ButCO2)3(TTFCO2) (1) and cis- and trans-Rh2(ButCO2)2(TTFCO2)2 (cis- and trans-2). Their triethylamine adducts [1(NEt3)2] and cis-[2(NEt3)2] were purified and isolated with chromatographic separation, and characterized with single crystal X-ray analysis. Trans-[2(NEt3)2] is not completely separated from a mixture of cis- and trans-[2(NEt3)2], but its single crystals were obtained from a solution of the mixture. A three-step quasi-reversible oxidation process was observed for 1 in MeCN. The first two steps correspond to the oxidation of the TTFCO2 moiety and the last one is the oxidation of the Rh2 core. The oxidation of cis-2 is observed as a two-step process with very similar E1/2 values to those of the first two processes for 1. Both 1+ and cis-22+ in MeCN at room temperature show isotropic ESR spectra with a g value of 2.008 and aH = 0.135 mT for two equivalent H atoms and aH = 0.068 mT for one H atom. The redox and ESR data of cis-2 suggest that the intramolecular interaction between the TTF moieties is very small.  相似文献   

10.
Two new zincophosphites [C6H14N2]0.5[Zn(H2PO3)2] 1 and [C4H12N2]0.5[(CH3)2NH2][Zn2(HPO3)3] 2 have been solvothermally synthesized in mixed solvents of N,N-dimethylformamide (DMF) and 1,4-dioxane (DOA), respectively. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a neutral inorganic chain formed by ZnO4 and HPO2(OH) units. Interestingly, the left- and right-handed hydrogen-bonded helical chains are alternately formed via the hydrogen-bonds between two adjacent chains. Compound 2 exhibits a layer structure with 4- and 12-MRs formed by ZnO4 and HPO3 units, in which two kinds of organic amine molecules both act as countercations to compensate the overall negative electrostatic charge of the anionic network.  相似文献   

11.
12.
A new ruthenium nitric oxide complex with the bidentate phosphine, 1,2-bis(diethylphosphino)ethane (depe), has been synthesized and characterized by UV-Vis, infrared, EPR, NMR, electrochemical techniques and X-ray structure determination. The electronic spectrum showed a typical band of dπ→pπ* charge-transfer (CT) transition, assigned to Ru(II)NO transition, and the vibrational spectrum exhibited a peak of nitrosyl ligand at (νNO=1851 cm−1). A model structure for this complex has been proposed based on 1H, 1H{31P}, 31P{1H}, 13C{1H}, COSY 1H1H{31P}, J-Resolved, HSQC, HMBC, HSQC 1H13C{31P} and 1H13C HSQC/1H1H TOCSY spectral data, and confirmed by X-ray diffraction. The nitrosonium character for the NO ligand become evident through both electron paramagnetic resonance and X-ray data (angle RuNO=177.4(3)°). The reversible monoeletronic process at E1/2=0.040 V versus SHE was assigned to the ligand NO+/NO redox couple. Under treatment with Cd(Hg) solutions containing the [Ru(NO)(depe)2Cl](PF6)2 yields a signal in the EPR spectrum (g=1.99 and g//=1.88) which fitted quite well with the simulated spectra of coordinated NO species.  相似文献   

13.
外源H2O2和·OH对大麦幼苗根系线粒体膜脂和流动性的伤害   总被引:3,自引:0,他引:3  
以大麦(HordeumvulgareL.)为材料,研究了外源H2O2和*OH对大麦根系呼吸速率、线粒体膜流动性和膜脂脂肪酸组成的影响。结果表明,10mmol/LH2O2或·OH处理4d,大麦幼苗根系呼吸速率和线粒体膜脂不饱和脂肪酸含量及脂肪酸不饱和指数下降,线粒体膜脂荧光强度增加,膜流动性下降,且H2O2或·OH处理浓度(在0.1~10mmol/L范围内)越高,膜脂流动性下降越明显。H2O2和·OH处理的同时加入同浓度的抗坏血酸(AsA)和甘露醇,膜流动性明显增强或恢复。  相似文献   

14.
The kinetics of the reactions between anhydrous HCl and trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] (L=CO, N2 or H2) have been studied in thf at 25.0 °C. When L=CO, the product is [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+, and when L=H2 or N2 the product is trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Using stopped-flow spectrophotometry reveals that the protonation chemistry of trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] is complicated. It is proposed that in all cases protonation occurs initially at the nitrogen atom of the isonitrile ligand to form trans-[MoL(CNHPh)(Ph2PCH2CH2PPh2)2]+. Only when L=N2 is this single protonation sufficient to labilise L to dissociation, and subsequent binding of Cl gives trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. At high concentrations of HCl a second protonation occurs which inhibits the substitution. It is proposed that this second proton binds to the dinitrogen ligand. When L=CO or H2, a second protonation is also observed but in these cases the second protonation is proposed to occur at the carbon atom of the aminocarbyne ligand, generating trans-[MoL(CHNHPh)(Ph2PCH2CH2PPh2)2]2+. Addition of the second proton labilises the trans-H2 to dissociation, and subsequent rapid binding of Cl and dissociation of a proton yields the product trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Dissociation of L=CO does not occur from trans-[Mo(CO)(CHNHPh)(Ph2PCH2CH2PPh2)2]2+, but rather migration of the proton from carbon to molybdenum, and dissociation of the other proton produces [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+.  相似文献   

15.
Hydrothermal reactions of lead(II) acetate and HO2C(CH2)3N(CH2PO3H2)2 at 170 and 140 °C, respectively, resulted in two different lead diphosphonates, namely, Pb2[NH(CH2PO3)2] · 2H2O (1), in which the butyric acid moiety of the HO2C(CH2)3N(CH2PO3H2)2 has been cleaved and a novel layered compound, Pb3[HO2C(CH2)3NH(CH2PO3)2]2 · 2H2O (2). Their crystal structures have been determined by single crystal X-ray diffraction. In compound 1, the interconnection of the lead(II) ions by bridging amino-diphosphonate ligands leads to the formation of a 3D network. Compound 2 features an unusual triple-layer structure with the non-coordinated butyric acid moieties as pendant groups between the layers.  相似文献   

16.
The orthorhombically crystallizing salts Rb2[B12(OH)12]·2H2O (= 1576.81(9), b = 813.08(5), c = 1245.32(7) pm) and Rb2[B12(OH)12]·2H2O2 (= 1616.54(9), b = 814.29(5), c = 1260.12(7) pm) could be prepared from Rb2[B12H12] and hydrogen peroxide. Both crystal structures were determined by X-ray single crystal diffraction and refined in the space group Cmce. They are not isostructural to the other compounds containing icosahedral dodecahydroxo-closo-dodecaborate dianions [B12(OH)12]2− and potassium, rubidium or cesium cations already known to literature, but both title compounds crystallize quasi-isotypically exhibiting Rb+ cations in 10-fold oxygen coordination. The hydrogen peroxide adduct (Rb2[B12(OH)12]·2H2O2) is explosive on shock and heat, while the hydrate (Rb2[B12(OH)12]·2H2O) is not.  相似文献   

17.
CO2浓度升高可以诱导植物叶片气孔关闭, 提高植物对高浓度CO2的适应性。但植物如何感知CO2浓度变化并启动气孔关闭反应的分子机制至今仍不十分清楚。利用高通量、非侵入的远红外成像技术, 建立了拟南芥(Arabidopsis thaliana)气孔对CO2浓度变化反应相关的突变体筛选技术, 筛选出对环境CO2浓度敏感的拟南芥突变体ecs1。遗传学分析表明, ecs1为单基因隐性突变体, 突变基因ECS1编码一个跨膜钙离子转运蛋白。与野生型拟南芥相比, 360 μL·L–1CO2可引起ecs1突变体叶片温度上升和气孔关闭, ecs1突变体对900 μL·L–1CO2长时间处理具有较强的适应性。进一步的实验表明, 360μL·L–1CO2即可诱导ecs1突变体叶片积累较高浓度的H2O2, 而900 μL·L–1CO2才能够诱导野生型拟南芥叶片积累H2O2。因此, ECS1可能参与调节高浓度CO2诱导的拟南芥气孔关闭和H2O2产生, H2O2可能作为第二信号分子介导CO2诱导拟南芥气孔关闭的反应。  相似文献   

18.
19.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

20.
Thermogravimetrical analysis has been used to study the kinetics of thermal deamination of bis(ethylenediamine)nickel(II)-containing aluminophosphate (Ni-CHA) which is a precursor of nickel(II)-containing chabazite-like AlPO4-34. The deamination occurs as a single-step kinetic process which is best described by the contracting cylinder model. The obtained activation energy of 200 kJ/mol is mainly a reflection of the strong Ni-N coordination bond. The thermal decomposition of Ni-CHA results in the deposition of crystalline NiO particles homogeneously dispersed in the AlPO4-34 lattice. Average particle size was found to be about 5 nm. The study confirms that the thermal decomposition of amine complexes of Ni(II) encapsulated inside the microporous aluminophosphate host can be a suitable method for obtaining fine nano-oxide particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号