首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recently, we have shown that MK-886 - an inhibitor of five lipoxygenase activating protein (FLAP) inhibits atherosclerosis in apolipoprotein E / LDL receptor - double knockout mice. We, therefore, wanted to find out if other FLAP inhibitor - BAYx1005 given at a dose of 1.88 mg per 100 mg of body weight per day during 16 weeks, could also attenuate atherogenesis. In apoE/LDLR - DKO mouse model BAYx1005 inhibited atherogenesis, measured both by "en face" method (23.84 +/- 2.7% vs. 15.16 +/- 1.4%) and "cross-section" method (497236 +/- 31516 microm(2) vs. 278107 +/- 21824 microm(2)). This is the first report that shows the effect of BAYx1005 on atherogenesis in gene-targeted mice.  相似文献   

2.
Nuclear factor - kappaB (NF-kappaB) is a good therapeutic target for cardiovascular disease and numerous efforts are being made to develop safe NF-kappaB inhibitors. Nowadays many authors address NF-kappaB as a major therapeutic target in atherosclerosis, especially for preventive measures, in the light of two main hypothesis of atherosclerosis: oxidation and inflammation. We hypothesized that ammonium pyrrolidinedithioocarbamate (PDTC) - a well-known inhibitor of NF-kappaB could inhibit the development of atherosclerosis in this experimental model. We used apoE/LDLR - DKO mouse model, which is considered as a one of the best models to study the anti-atherosclerotic effect of drugs. In this model PDTC inhibited atherogenesis, measured both by "en face" method (25,15+/-2,9% vs. 15,63+/-0,6%) and "cross-section" method (565867+/-39764 microm2 vs. 291695+/-30384 microm2). Moreover, PDTC did not change the profile of cholesterol and triglycerides in blood. To our knowledge, this is the first report that shows the effect of PDTC on atherogenesis in gene-targeted apoE/LDLR - double knockout mice.  相似文献   

3.
The inducible nitric oxide synthase (iNOS) is abundantly expressed by smooth muscle cells and macrophages in atherosclerotic lesions. Apolipoprotein E-deficient (apoE(-/-)) mice develop early and advanced atherosclerotic lesions. The role of iNOS in both early and advanced atherosclerotic formation was determined in apoE(-/-) mice. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 12 weeks of age on chow diet, iNOS(-/-)/apoE(-/-) mice developed comparable sizes of early atherosclerotic lesions in the aortic root as did iNOS(+/+)/apoE(-/-) mice (30,993+/-4746 vs. 26,648+/-6815 microm(2)/section; P=0.608). After being fed the Western diet for 12 weeks, iNOS(-/-)/apoE(-/-) mice developed significantly smaller advanced lesions than iNOS(+/+)/apoE(-/-) mice (458,734+/-14,942 vs. 519,570+/-22,098 microm(2)/section; P=0.029). This reduction in lesion formation could not be explained by differences in plasma lipid levels. To examine whether iNOS contributed to LDL oxidation, smooth muscle cells were isolated from the aorta, activated with TNF-alpha, and then incubated with native LDL in the absence or presence of N-Omega-nitro-L-arginine methyl ester (L-NAME), a specific NOS inhibitor. L-NAME significantly inhibited LDL oxidation by smooth muscle cells from iNOS(+/+)/apoE(-/-) mice (P=0.048), but it had no effect on LDL oxidation by cells from iNOS(-/-)/apoE(-/-) mice. iNOS(-/-)/apoE(-/-) mice had a significantly lower plasma lipoperoxide level on the Western diet (2.74+/-0.23 vs. 3.89+/-0.41 microM MDA; P=0.021) but not on chow diet (1.02+/-0.07 vs. 1.51+/-0.29 microM MDA; P=0.11). Thus, the absence of iNOS-mediated LDL oxidation may contribute to the reduction in advanced lesion formation of iNOS(-/-)/apoE(-/-) mice.  相似文献   

4.
Previous studies have suggested that the terminal complex of complement may contribute to the pathogenesis of atherosclerosis. C5b-9 complexes colocalize with the extracellular lipid in the aortic intima of hypercholesterolemic rabbits, and C6-deficient rabbits develop less atherosclerosis than controls. To test the role of complement in atherosclerosis in a different animal model, C5 deficient (C5def) mice were cross-bred with atherosclerosis susceptible apoE(-/-) mice, generating mice deficient in both apoE and C5 and control apoE(-/-) mice. Progeny were typed for C5 titer and serum cholesterol levels. Both male and female mice were fed a high fat diet from weaning until 22 weeks of age. At that time there were no significant differences in plasma cholesterol or triglycerides between apoE(-/-) control and apoE(-/-)/C5def groups. Morphometric analysis of the aortic root lesions gave mean (+/-SEM) lesion areas for male apoE(-/-) and apoE(-/-)/C5def mice of 468,176 +/- 21,982 and 375,182 +/- 53,089 microm(2), respectively (n = 10 each, P value = 0.123). In female apoE(-/-) mice (n = 5), the mean lesion area was 591,981 +/- 53,242 microm(2), compared to 618,578 +/- 83,457 microm(2) for female apoE(-/-)/C5def mice (n = 10) (P value = 0.835). Thus neither male nor female mice showed a significant change in lesion area when C5 was not present. In contrast to the case in the hypercholesterolemic rabbit, activation of the terminal complex of complement does not play a major role in the development of atherosclerosis in apoE(-/-) mice.  相似文献   

5.
Lipoprotein lipase (LPL) is known to play a crucial role in lipoprotein metabolism by hydrolyzing triglycerides; however its role in atherogenesis has yet to be determined. We have previously shown that low density lipoprotein receptor knockout mice overexpressing LPL are resistant to diet-induced atherosclerosis due to the suppression of remnant lipoproteins. Plasma lipoproteins and atherosclerosis of apolipoprotein (apo) E knockout mice which overexpress the human LPL transgene (LPL/APOEKO) were compared with those of control apoE knockout mice (APOEKO). On a normal chow diet, LPL/APOEKO mice showed marked suppression of the plasma triglyceride levels compared with APOEKO mice (54 vs. 182 mg/dl), but no significant changes in plasma cholesterol and apoB levels. Non-high density lipoproteins (HDL) from LPL/APOEKO mice had lower triglyceride content, a smaller size, and a more positive charge compared with those from APOEKO mice. Cholesterol, apoA-I, and apoA-IV were increased in HDL. Although both groups developed hypercholesterolemia to a comparable degree in response to an atherogenic diet, the LPL/APOEKO mice developed 2-fold smaller fatty streak lesions in the aortic sinus compared to the APOEKO mice. In conclusion, overproduction of LPL is protective against atherosclerosis even in the absence of apoE.  相似文献   

6.
Sphingomyelin (SM) plays a very important role in cell membrane formation and plasma lipoprotein metabolism. All these functions may have an impact on atherosclerotic development. To investigate the relationship between SM metabolism and atherosclerosis, we utilized a sphingolipid-rich diet to feed LDL receptor gene knockout (LDLr KO) mice and studied lipid metabolism and atherosclerosis in the mice. After 3 months of a sphingolipid-rich diet, we found a significant increase in SM, cholesterol, and SM/phosphatidylcholine (PC) ratio (50%, P<0.001; 62%, P<0.01; and 45%, P<0.01, respectively), compared to chow fed diet. HDL-lipids were not significantly altered. Non-HDL-SM, non-HDL-C, and non-HDL-SM/non-HDL-PC ratio were significantly increased (115%, P<0.001; 106%, P<0.001; and 106%, P<0.01, respectively). FPLC confirmed the results. SDS-PAGE showed an increase of apoB48 and apoB100, but no changes of apoAI. Moreover, we found that an SM-rich diet significantly increased atherosclerotic lesion area in both root assay and en face assay, compared to chow diet (58,210+/-15,300 microm(2) vs. 9670+/-2370 microm(2), P<0.001; 5.9+/-3.1% vs. 1.1+/-0.9%, P<0.001). These results indicate that the enrichment of sphingolipids in diet has proatherogenic properties.  相似文献   

7.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

8.
Apolipoprotein (apo)E is synthesized in atherosclerotic lesions by macrophages, however, its role in lesions is not known. Whereas apoE could exacerbate atherosclerosis by promoting macrophage uptake of cholesterol-rich lipoproteins or modulating protective inflammatory responses, it could also restrict lesion formation by facilitating cholesterol efflux out of lesions. The role of apoE was examined in lethally irradiated male C57BL/6J wild-type (WT) mice that were repopulated with bone marrow cells (BMT) from either identical C57BL/6J mice (WT+WT BMT) or C57BL/6J apoE-deficient mice (WT+E-/- BMT). This enabled us to compare normal mice with mice possessing macrophages that did not express apoE. The participation of macrophage-derived apoE in atherosclerosis was assessed by placing the mice on an atherogenic diet. Male WT+E-/- BMT mice had significantly reduced lesion area in the aortic valves (P < 0.01) compared with male WT+WT BMT mice ( approximately 22,000 vs. approximately 49,000 microm2/section, respectively). Further evaluation revealed that plasma cholesterol, lipoprotein cholesterol distribution, and plasma apoE were similar between the two groups, indicating that these known risk factors did not account for the differences in lesion area. However, the two groups were distinguished by the amount of apoE found in the lesions. ApoE antigen was expressed abundantly in WT+WT BMT lesions, whereas WT+E-/- BMT lesions contained little apoE. These findings indicate that the majority of apoE in lesions is synthesized locally by resident macrophages, and suggest that locally produced apoE can promote diet-induced atherosclerosis in male wild-type mice.  相似文献   

9.
ABCG1 promotes cholesterol efflux from cells, but ABCG1(-/-) bone marrow transplant into ApoE(-/-) and LDLr(-/-) mice reduces atherosclerosis. To further investigate the role of ABCG1 in atherosclerosis, ABCG1 transgenic mice were crossed with LDLr-KO mice and placed on a high-fat western diet. Increased expression of ABCG1 mRNA was detected in liver (1.8-fold) and macrophages (2.7-fold), and cholesterol efflux from macrophages to HDL was also increased (1.4-fold) in ABCG1xLDLr-KO vs. LDLr-KO mice. No major differences were observed in total plasma lipids. However, cholesterol in the IDL-LDL size range was increased by approximately 50% in ABCG1xLDLr-KO mice compared to LDLr-KO mice. Atherosclerosis increased by 39% (10.1+/-0.8 vs 6.1+/-0.9% lesion area, p=0.02), as measured by en face analysis, and by 53% (221+/-98 vs 104+/-58x10(3)microm(2), p =0.01), as measured by cross-sectional analysis in ABCG1xLDLr-KO mice. Plasma levels for MCP-1 (1.5-fold) and TNF-alpha (1.2-fold) were also increased in ABCG1xLDLr-KO mice. In summary, these findings suggest that enhanced expression of ABCG1 increases atherosclerosis in LDLr-KO mice, despite its role in promoting cholesterol efflux from cells.  相似文献   

10.
OBJECTIVE: To selectively determine the role of leukocyte CC-chemokine receptor 2 (CCR2) in atherogenesis. METHODS AND RESULTS: Bone marrow progenitor cells harvested from CCR2(+/+) mice were transplanted into irradiated CCR2(-/-) mice, representing the whole-body absence of CCR2 except in leukocytes. Transplantation of CCR2(-/-) bone marrow into CCR2(-/-) mice served as control. Eight weeks after bone marrow transplantation, the diet of regular chow was switched to a high-cholesterol diet for another 10 weeks in order to induce atherosclerosis. No significant differences in serum cholesterol and triglyceride levels were observed between the two groups. However, the mean cross-sectional aortic root lesion area of CCR2(+/+)-->CCR2(-/-) mice amounted up to 12.28+/-3.28x10(4) microm(2), compared with only 3.08+/-0.74 x 10(4) microm(2) observed in the CCR2(-/-)-->CCR2(-/-) group. Thus, the presence of CCR2 exclusively on leukocytes induces a fourfold increase in aortic lesion area. This extent of lesion development was comparable to C57Bl/6 mice receiving CCR2(+/+) bone marrow (10.08+/-3.30x10(4) microm(2)). CONCLUSION: These results point at a dominant role of leukocyte CCR2 in atherogenesis, implying that CCR2 from nonleukocyte sources, like endothelial cells or smooth muscle cells, is less critical in the initiation of atherosclerosis. Pharmacological inhibition of leukocyte CCR2 function might be a promising strategy to prevent atherosclerosis.  相似文献   

11.
We have previously reported that the introduction of macrophage apoE into mice lacking both apoE and the LDL receptor (apoE(-)(/-)/LDLR(-)(/-)) through bone marrow transplantation (apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-)) produces progressive accumulation of apoE in plasma without affecting lipid levels. This model provides a tool to study the effects of physiologically regulated amounts of macrophage apoE on atherogenesis in hyperlipidemic animals. Ten-week-old male apoE(-)(/-)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) (n = 11) or apoE(-)(/-)/LDLR(-)(/-) (n = 14) marrow. Although there were no differences between the two groups in lipid levels at baseline or at 5 and 9 weeks after transplantation, apoE levels in the apoE(+)(/+)LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) mice increased to 4 times the apoE levels of normal mice. This resulted in a 60% decrease in aortic atherosclerosis in the apoE(+)(/+)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) compared with the apoE(-)(/-)/LDLR(-)(/-)-->apoE(-)(/-)/LDLR(-)(/-) controls, (15957 +/- 1907 vs. 40115 +/- 8302 micro m(2) +/- SEM, respectively). In a separate experiment, apoE(+)(/+)/LDLR(-)(/-) mice were transplanted with either apoE(+)(/+)/LDLR(-)(/-) or apoE(-)(/-)/LDLR(-)(/-) marrow and placed on a high-fat diet for 8 weeks. In the absence of macrophage apoE, lesion area was increased by 75% in the aortic sinus and by 56% in the distal aorta. These data show that physiologic levels of macrophage apoE in the vessel wall are anti-atherogenic in conditions of severe hyperlipidemia and can affect later stages of plaque development.  相似文献   

12.
Recruitment of inflammatory cells in the arterial wall by vascular adhesion molecules plays a key role in development of atherosclerosis. Apolipoprotein E-deficient (apoE(-/-)) mice have spontaneous hyperlipidemia and develop all phases of atherosclerotic lesions. We sought to examine plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and sP-selectin in two apoE(-/-) strains C57BL/6 (B6) and BALB/c with early or advanced lesions. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. On either diet, BALB/c.apoE(-/-) mice developed much smaller atherosclerotic lesions and displayed significantly lower levels of sVCAM-1 and sP-selectin than B6.apoE(-/-) mice. The Western diet significantly elevated sVCAM-1 levels in both strains and sP-selectin levels in B6.apoE(-/-) mice. BALB/c.apoE(-/-) mice exhibited 2-fold higher HDL cholesterol levels on the chow diet and 15-fold higher HDL levels on the Western diet than B6.apoE(-/-) mice, although the two strains had comparable levels of total cholesterol and triglyceride. Thus, increased atherosclerosis is accompanied by increases in circulating VCAM-1 and P-selectin levels in the two apoE(-/-) mouse strains, and the high HDL level may protect against atherosclerosis by inhibiting the expression of adhesion molecules in BALB/c.apoE(-/-) mice.  相似文献   

13.
LDL receptor-deficient (LDLR(-/-)) mice fed a Western diet exhibit severe hyperlipidemia and develop significant atherosclerosis. Apolipoprotein E (apoE) is a multifunctional protein synthesized by hepatocytes and macrophages. We sought to determine effect of macrophage apoE deficiency on severe hyperlipidemia and atherosclerosis. Female LDLR(-/-) mice were lethally irradiated and reconstituted with bone marrow from either apoE(-/-) or apoE(+/+) mice. Four weeks after transplantation, recipient mice were fed a Western diet for 8 weeks. Reconstitution of LDLR(-/-) mice with apoE(-/-) bone marrow resulted in a slight reduction in plasma apoE levels and a dramatic reduction in accumulation of apoE and apoB in the aortic wall. Plasma lipid levels were unaffected when mice had mild hyperlipidemia on a chow diet, whereas IDL/LDL cholesterol levels were significantly reduced when mice developed severe hyperlipidemia on the Western diet. The hepatic VLDL production rate of mice on the Western diet was decreased by 46% as determined by injection of Triton WR1339 to block VLDL clearance. Atherosclerotic lesions in the proximal aorta were significantly reduced, partially due to reduction in plasma total cholesterol levels (r=0.56; P<0.0001). Thus, macrophage apoE-deficiency alleviates severe hyperlipidemia by slowing hepatic VLDL production and consequently reduces atherosclerosis in LDLR(-/-) mice.  相似文献   

14.
LDL receptor-related protein 5 (LRP5) plays multiple roles, including embryonic development and bone accrual development. Recently, we demonstrated that LRP5 is also required for normal cholesterol metabolism and glucose-induced insulin secretion. To further define the role of LRP5 in the lipoprotein metabolism, we compared plasma lipoproteins in mice lacking LRP5, apolipoprotein E (apoE), or both (apoE;LRP5 double knockout). On a normal chow diet, the apoE;LRP5 double knockout mice (older than 4 months of age) had approximately 60% higher plasma cholesterol levels compared with the age-matched apoE knockout mice. In contrast, LRP5 deficiency alone had no significant effects on the plasma cholesterol levels. High performance liquid chromatography analysis of plasma lipoproteins revealed that cholesterol levels in the very low density lipoprotein and low density lipoprotein fractions were markedly increased in the apoE;LRP5 double knockout mice. There were no apparent differences in the pattern of apoproteins between the apoE knockout mice and the apoE;LRP5 double knockout mice. The plasma clearance of intragastrically loaded triglyceride was markedly impaired by LRP5 deficiency. The atherosclerotic lesions of the apoE;LRP5 double knockout mice aged 6 months were approximately 3-fold greater than those in the age-matched apoE-knockout mice. Furthermore, histological examination revealed highly advanced atherosclerosis, with remarkable accumulation of foam cells and destruction of the internal elastic lamina in the apoE;LRP5 double knockout mice. These data suggest that LRP5 mediates both apoE-dependent and apoE-independent catabolism of plasma lipoproteins.  相似文献   

15.
To establish a mouse model of accelerated atherosclerosis in lupus, we generated apolipoprotein E-deficient (apoE(-/-)) and Fas(lpr/lpr) (Fas(-/-)) C57BL/6 mice. On a normal chow diet, 5 month old apoE(-/-)Fas(-/-) mice had enlarged glomerular tuft areas, severe proteinuria, increased circulating autoantibody levels, and increased apoptotic cells in renal and vascular lesions compared with either single knockout mice. Also, double knockout mice developed increased atherosclerotic lesions but decreased serum levels of total and non-HDL cholesterol compared with apoE(-/-)Fas(+/+) littermates. Moreover, female apoE(-/-)Fas(-/-) mice had lower vertebral bone mineral density (BMD) and bone volume density (BV/TV) than age-matched female apoE(-/-)Fas(+/+) mice. Compared with apoE(-/-)Fas(+/+) and apoE(+/+)Fas(-/-) mice, apoE(-/-)Fas(-/-) mice had decreased circulating oxidized phospholipid (OxPL) content on apoB-100 containing lipoprotein particles and increased serum IgG antibodies to OxPL, which were significantly correlated with aortic lesion areas (r = 0.58), glomerular tuft areas (r = 0.87), BMD (r = -0.57), and BV/TV (r = -0.72). These results suggest that the apoE(-/-)Fas(-/-) mouse model might be used to study atherosclerosis and osteopenia in lupus. Correlations of IgG anti-OxPL with lupus-like disease, atherosclerosis, and bone loss suggested a shared pathway of these disease processes.  相似文献   

16.
Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia. Recombinant CHO-E3 cells were encapsulated into either alginate poly-l-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation. Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [(3)H]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-l-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies. We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis.  相似文献   

17.
Serum paraoxonase (PON1), present on high density lipoprotein, may inhibit low density lipoprotein (LDL) oxidation and protect against atherosclerosis. We generated combined PON1 knockout (KO)/apolipoprotein E (apoE) KO and apoE KO control mice to compare atherogenesis and lipoprotein oxidation. Early lesions were examined in 3-month-old mice fed a chow diet, and advanced lesions were examined in 6-month-old mice fed a high fat diet. In both cases, the PON1 KO/apoE KO mice exhibited significantly more atherosclerosis (50-71% increase) than controls. We examined LDL oxidation and clearance in vivo by injecting human LDL into the mice and following its turnover. LDL clearance was faster in the double KO mice as compared with controls. There was a greater rate of accumulation of oxidized phospholipid epitopes and a greater accumulation of LDL-immunoglobulin complexes in the double KO mice than in controls. Furthermore, the amounts of three bioactive oxidized phospholipids were elevated in the endogenous intermediate density lipoprotein/LDL of double KO mice as compared with the controls. Finally, the expression of heme oxygenase-1, peroxisome proliferator-activated receptor gamma, and oxidized LDL receptors were elevated in the livers of double KO mice as compared with the controls. These data demonstrate that PON1 deficiency promotes LDL oxidation and atherogenesis in apoE KO mice.  相似文献   

18.
Magnesium (Mg) modulates blood lipid levels, atherogenesis, and atherosclerosis in rabbits, when supplemented to diet. We have recently reported that a high concentration (50 g/L) of Mg sulfate fortification of drinking water attenuates atherogenesis in male and female LDL-receptor-deficient mice fed a high-cholesterol diet. The aims of the current study were to examine whether lower concentrations and another Mg salt could also have such an antiatherogenic effect. Thirty male LDL-receptor-deficient mice were divided into three groups (n=10 in each group). The mice received either distilled water or water fortified with 0.83 g or with 8.3 g Mg-chloride per liter. In the first (27 wk) and second (5 wk) stages of the experiment, the mice received normal chow and Western-type diet, respectively. Blood was drawn for determination of plasma Mg, calcium, and lipid levels. The extent of atherosclerotic lesions was determined at the aortic sinus. Magnesium-chloride fortification of drinking water did not result in higher plasma Mg concentrations, whereas a trend toward lower plasma calcium concentrations did not reach statistical significance. Even though plasma lipid levels were similar at the beginning and the end of the study, there were decreased plasma cholesterol and triglyceride levels in the Mg groups after stage I. The atherosclerosis extent at the aortic sinus was significantly decreased in the 8.3-g Mg-chloride/L group (23,437 +/- 10,083 micron2) compared with the control group (65,937 +/- 31,761 microm2). There was also a trend toward lower atherosclerosis extent at the aortic sinus in the 0.83-g Mg-chloride/L group. An additional Mg salt (Mg-chloride) fortification of drinking water is capable of inhibiting atherogenesis in male LDL-receptor-deficient mice. That is done in a lower concentration of Mg than previously reported.  相似文献   

19.
We investigated the human apolipoprotein E2 (apoE2) transgenic mouse as an animal model system for age-related macular degeneration (AMD). Transgenic mice expressing human apoE2 and C57BL/6J mice were fed normal chow or a high-fat diet for 4 weeks. Eyes were collected from the mice and lipid deposits in retinal pigment epithelium (RPE) were assessed using electron microscopy. The expressions of apoE, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and pigment-epithelium derived factor (PEDF), which are molecular markers for angiogenesis, were assessed with immunohistochemistry. Eyes from apoE2 mice, regardless of diet, contained lipid accumulation in RPE under electron microscopy, whereas control C57BL/6J eyes did not. Lipid accumulation was found predominantly in the RPE and the Bruch's membrane and increased in the eyes of apoE2 mice after one month of a high-fat diet (8 +/- 2 per 50 microm2 for normal chow and 11 +/- 2 per 50 microm2, p < 0.05). ApoE expression was similar in the apoE2 and control mice; however, VEGF and bFGF were overexpressed in the retinal pigment epithelium of apoE2 eyes compared with control eyes, and PEDF expression was slightly decreased. These expression patterns of VEGF, bFGF, and PEDF suggest angiogenesis is progressing in apoE2 eyes. In conclusion, the eyes of apoE2 mice develop typical lipid accumulations, a common characteristic of AMD, making them a suitable animal model for AMD. The expression profile of VEGF and bFGF on the retinal pigment epithelium suggests that apoE2 may induce neovascularization by altering angiogenic cytokines.  相似文献   

20.
In the previous study, we generated mice lacking thromboxane A2 receptor (TP) and apolipoprotein E, apoE(-/-)TP(-/-) mice, and reported that the double knockout mice developed markedly smaller atherosclerotic lesions than those in apoE(-/-) mice. To investigate the mechanism responsible for reduced atherosclerosis in apoE(-/-)TP(-/-) mice, we examined the role of TP in bone marrow (BM)-derived cells in the development of the atherosclerotic lesions. When we compared the function of macrophages in apoE(-/-) and in apoE(-/-)TP(-/-) mouse in vitro, there was no difference in the expression levels of cytokines and chemokines after stimulation with lipopolysaccharide. We then transplanted the BM from either apoE(-/-) or apoE(-/-)TP(-/-) mice to either apoE(-/-) or apoE(-/-)TP(-/-) mice after sublethal irradiation. After 12 weeks with high fat diet, we analyzed the atherosclerotic lesion of aortic sinus. When the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-) mice, the lesion size was almost the same as that of apoE(-/-) mice without BM transplantation. In contrast, when the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-)TP(-/-) mice, the lesion size was markedly reduced. These results indicate that the protection of atherogenesis in TP(-/-) mice is not associated with TP in BM-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号