首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB.  相似文献   

2.
Monoclonal antibody engineering in plants.   总被引:2,自引:0,他引:2  
A Hiatt  J K Ma 《FEBS letters》1992,307(1):71-75
Techniques for plant transformation have been developed to such an extent that a number of foreign genes are currently being introduced into transgenic plants. Tobacco plants that produce monoclonal antibodies are of interest, because in addition to synthesis of two gene products (i.e. the heavy and light chains), the two polypeptides need to be assembled correctly, in order to result in a functional antibody. The studies on a catalytic antibody suggest that this is the case, and that the antibody functions identically to the native murine-derived antibody. The only difference observed was in the glycosylation of the heavy chain. Further transgenic plants are being generated to produce monoclonal antibodies that may be used therapeutically (and are therefore required in large quantities), or to provide disease resistance in plants. In addition, the ability of plants to assemble antibody complexes is being investigated further, to study the possibility of generating secretory IgA, which consists of heavy and light chains as well as two additional polypeptide units.  相似文献   

3.
Sidhu SS 《FEBS letters》2012,586(17):2778-2779
For more than 30years, the production of research antibodies has been dominated by hybridoma technologies, while modern recombinant technologies have lagged behind. Here I discuss why this situation must change if we are to generate reliable, comprehensive reagent sets on a genome-wide scale, and I describe how a cultural shift in the research community could revolutionize and modernize the affinity reagent field. In turn, such a revolution would pay huge dividends by closing the gap between basic research and therapeutic development, thus enabling the development of myriad new therapies for unmet medical needs.  相似文献   

4.
Asian elephant (Elephas maximus) immunity is poorly characterized and understood. This gap in knowledge is particularly concerning as Asian elephants are an endangered species threatened by a newly discovered herpesvirus known as elephant endotheliotropic herpesvirus (EEHV), which is the leading cause of death for captive Asian elephants born after 1980 in North America. While reliable diagnostic assays have been developed to detect EEHV DNA, serological assays to evaluate elephant anti-EEHV antibody responses are lacking and will be needed for surveillance and epidemiological studies and also for evaluating potential treatments or vaccines against lethal EEHV infection. Previous studies have shown that Asian elephants produce IgG in serum, but they failed to detect IgM and IgA, further hampering development of informative serological assays for this species. To begin to address this issue, we determined the constant region genomic sequence of Asian elephant IgM and obtained some limited protein sequence information for putative serum IgA. The information was used to generate or identify specific commercial antisera reactive against IgM and IgA isotypes. In addition, we generated a monoclonal antibody against Asian elephant IgG. These three reagents were used to demonstrate that all three immunoglobulin isotypes are found in Asian elephant serum and milk and to detect antibody responses following tetanus toxoid booster vaccination or antibodies against a putative EEHV structural protein. The results indicate that these new reagents will be useful for developing sensitive and specific assays to detect and characterize elephant antibody responses for any pathogen or vaccine, including EEHV.  相似文献   

5.
单克隆抗体是现代生命科学研究的重要工具,为许多领域的发展作出了不可估量的贡献。随着PCR技术和单克隆抗体技术的发展和成熟,单个B细胞抗体制备技术迅速兴起。该技术能够对单个的抗原特异性B细胞进行抗体基因的体外克隆和表达,保证了轻重链可变区的天然配对,相较于传统的抗体制备技术具有效率高、全人源、基因多样性更丰富等优势。单个B细胞抗体制备技术已成为制备全人抗体的热门方法,同时也促进了包括抗体发生成熟、疫苗保护机制、疫苗开发、肿瘤及自身免疫疾病等免疫学相关研究。文中就单个B细胞抗体制备技术的过程及应用作简要综述。  相似文献   

6.
The central nervous system is separated from the rest of the body by the blood-brain barrier. This barrier prevents many substances, such as the antibodies, to penetrate into the brain making it difficult to use them for the treatment of brain diseases, such as tetanus and botulism. These two diseases are caused by the development of bacilli of the genus Clostridium which release neurotropic toxins. Specific antibodies can neutralize toxin activity when the toxin is in the blood but are ineffective when it is transported into nerve cells. Various invasive strategies have been used to deliver antibodies to the brain. However, they can induce seizures and transient neurologic deficits and may be applicable only for diseases restricted to the brain surface. Physiologically based strategies utilizing transport systems naturally present at the blood-brain barrier appear to be a more promising approach to brain delivery of antibodies. Cationization is a chemical treatment that causes the conversion of superficial carboxyl groups on a protein into extended primary amino groups. This is used to increase interactions of this protein with the negative charges at the luminal plasma membrane of the brain endothelial cells. The cationized protein can then undergo adsorptive mediated transcytosis through the blood-brain barrier. There are many problems yet to be solved in successfully carrying out in vivo applications of cationized antibodies. One of these problems is that cationization can cause damage to an antibody molecule and, thus, can compromise its binding affinity. Depending on the radiolabelling of the cationized antibodies, a serum inhibition phenomenon can possibly alter the pharmacokinetics and the organ distribution of these molecules. The antibodies can be cationized using various, synthetic (hexamethylenediamine) or naturally occuring (e.g., putrescine) polyamines. Hexamethylenediamine-induced and putrescine-induced brain uptakes of various antibodies and proteins have been shown, but the results obtained suggest that cationization with putrescine may be a more efficient approach to blood-brain barrier delivery. The development of animal or cellular models to check for therapeutic efficacy of cationized antibodies is necessary. In spite of the difficulties, the studies described in this paper indicate that cationization can be a realistic delivery strategy for carrying antibodies across the blood-brain barrier. The advances made in antibody technologies help generate more appropriate immunological structures for brain transfer with better effector functions and decreased immunogenicity or toxicity. Taken together, these two aspects can lead to further developments in treatment of intoxications caused by the clostridial neurotoxins.  相似文献   

7.
There is an ongoing need for effective materials that can replace autologous bone grafts in the clinical treatment of bone injuries and deficiencies. In recent years, research efforts have shifted away from a focus on inert biomaterials to favor scaffolds that mimic the biochemistry and structure of the native bone extracellular matrix (ECM). The expectation is that such scaffolds will integrate with host tissue and actively promote osseous healing. To further enhance the osteoinductivity of bone graft substitutes, ECM-mimetic scaffolds are being engineered with a range of growth factors (GFs). The technologies used to generate GF-modified scaffolds are often inspired by natural processes that regulate the association between endogenous ECMs and GFs. The purpose of this review is to summarize research centered on the development of regenerative scaffolds that replicate the fundamental collagen-hydroxyapatite structure of native bone ECM, and the functionalization of these scaffolds with GFs that stimulate critical events in osteogenesis.  相似文献   

8.
Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity.  相似文献   

9.
Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins.  相似文献   

10.
Aptamer therapeutics advance   总被引:7,自引:0,他引:7  
Aptamers are selected nucleic acid binding species with affinities and specificities for protein targets that rival those of monoclonal antibodies. Furthermore, aptamers have definite advantages over antibodies, in that they can be chemically synthesized and modifications can be introduced that improve their stabilities and pharmacokinetic properties. A number of aptamers against therapeutically important targets have shown efficacy in cell and animal models, and a handful of aptamers are now in clinical trials or are being used as drugs. Recent advances in selection technologies and a more thorough exploration of how to deliver nucleic acids to target cells and tissues should further speed the process of drug development.  相似文献   

11.
Agricultural crops, engineered to express transgenic traits, have been rapidly adopted by farmers since the initial commercialization of this technology in 1996. However, despite nearly 20 years of research in agricultural biotechnology, only two product categories have achieved commercial success: plants containing transgenes conferring tolerance to herbicides and plants containing insecticidal protein genes derived from Bacillus thuringensis. A number of transgenic concepts, while exhibiting promising phenotypes in laboratory experiments, have failed to generate commercially viable crops. Many of the leads produced by modern integrative approaches to understanding plant biology will need further optimization to deliver economically viable crops. Directed molecular evolution represents a powerful technology to optimize newly discovered leads towards product objectives. In this review, we show by example how directed molecular evolution can be used to develop enabling technologies for plant biologists; how genes can be optimized to generate improved input traits such as those conferring insect tolerance, disease control and herbicide tolerance; and how plant quality can be altered to improve yield, produce novel industrial feedstocks and improve nutritional qualities.  相似文献   

12.
The yeast Saccharomyces cerevisiae has been widely used for the implementation of DNA chip technologies. For this reason and due to the extensive use of this organism for basic and applied studies, yeast DNA chips are being used by many laboratories for expression or genomic analyses. While membrane arrays (macroarrays) offer several advantages, for many laboratories they are not affordable. Here we report that a cluster of four Spanish molecular-biology yeast laboratories, with relatively small budgets, have developed a complete set of probes for the genome of S. cerevisiae. These have been used to produce a new type of macroarray on a nylon surface. The macroarrays have been evaluated and protocols for their use have been optimized.  相似文献   

13.
The quantification of DNA damage, both in vivo and in vitro, can be very time consuming, since large amounts of samples need to be scored. Additional uncertainties may arise due to the lack of documentation or by scoring biases. Image analysis automation is a possible strategy to cope with these difficulties and to generate a new quality of reproducibility. In this communication we collected some recent results obtained with the automated scanning platform Metafer, covering applications that are being used in radiation research, biological dosimetry, DNA repair research and environmental mutagenesis studies. We can show that the automated scoring for dicentric chromosomes, for micronuclei, and for Comet assay cells produce reliable and reproducible results, which prove the usability of automated scanning in the above mentioned research fields.  相似文献   

14.
MultiBac: expanding the research toolbox for multiprotein complexes   总被引:1,自引:0,他引:1  
Protein complexes composed of many subunits carry out most essential processes in cells and, therefore, have become the focus of intense research. However, deciphering the structure and function of these multiprotein assemblies imposes the challenging task of producing them in sufficient quality and quantity. To overcome this bottleneck, powerful recombinant expression technologies are being developed. In this review, we describe the use of one of these technologies, MultiBac, a baculovirus expression vector system that is particularly tailored for the production of eukaryotic multiprotein complexes. Among other applications, MultiBac has been used to produce many important proteins and their complexes for their structural characterization, revealing fundamental cellular mechanisms.  相似文献   

15.
Proteins are the most abundant biomolecules within a cell and are involved in all biochemical cellular processes, fulfilling specific functions with unmatched precision. This unique specificity makes proteins an ideal scaffold to generate tools for the exploration of natural systems or for the construction of modern therapeutics. Thus, the chemoselective modification of proteins with functionalities that are not defined by the genetic code has become an indispensable approach for life science research and the development of therapeutics. Amongst site-selective strategies for protein modification, cysteine-selective approaches have long been used for the generation of functional protein conjugates and new reactions continue to emerge, offering solutions for diverse research questions. In this review, we are highlighting new strategies for the chemoselective modification of cysteine residues in peptides, proteins and antibodies with a particular focus on the most recent years. We lay special focus on new reagents for efficient cysteine conjugation that produce stable conjugation products with significant pharmaceutical application.  相似文献   

16.
李卉  刘子  章金刚 《生物技术通讯》2005,16(1):77-79,112
Rh血型是仅次于ABO血型系统的人类红细胞抗原系统,至今已发现40多种抗原,但与临床密切相关的是D,C、c、E、e等5种抗原,其中最主要的是D抗原。相应的抗-D抗体无论是在临床输血检测,还是在Rh(D)新生儿溶血病、溶血性输血反应等的防治方面均具有非常重要的意义。传统的抗-D抗体的制备需用人的血清,来源受限。各种抗-D人源性单克隆抗体和基因工程抗体已经成为发展方向。  相似文献   

17.
Large volumes of genomic data have been generated for several plant species over the past decade, including structural sequence data and functional annotation at the genome level. Various technologies such as expressed sequence tags (ESTs), massively parallel signature sequencing (MPSS) and microarrays have been used to study gene expression and to provide functional data for many genes simultaneously. This review focuses on recent advances in the application of microarrays in plant genomic research and in gene expression databases available for plants. Large sets of Arabidopsis microarray data are publicly available. Recently developed array platforms are currently being used to generate genome-wide expression profiles for several crop species. Coupled to these platforms are public databases that provide access to these large-scale expression data, which can be used to aid the functional discovery of gene function.  相似文献   

18.
The last 100years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.  相似文献   

19.
Development of humanized antibodies as cancer therapeutics   总被引:1,自引:0,他引:1  
Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described.  相似文献   

20.
Chromosome set manipulation techniques have significant implications for research of transgenic fish. Gynogenesis can be used to generate isogenic lines, to map genes in relation to their centromeres, and to produce fish carrying extra chromosome fragments of foreign origin. Androgenesis can be used to produce isogenic lines and to recover strains from cryopreserved sperm. Triploidy can be induced in fish with heat or pressure treatment of fertilized eggs and by crossing tetraploid individuals with normal diploids. Triploid fish are typically effectively sterile. Triploid interspecific hybrids are usually more viable than the corresponding diploid hybrids. Given concerns about potential reproduction of transgenic fish in the wild, induced triploidy could facilitate application of transgenic technologies in some situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号