首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Methyl-4-phenylpyridine (MPP+) induces oxidative stress in the rodent   总被引:1,自引:0,他引:1  
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) produces an irreversible parkinsonism in primates. Recent evidence suggests metabolism of MPTP to 1-methyl-4-phenylpyridine (MPP+) is required for toxicity. We have proposed that MPP+ may play a central role in the toxicity of MPTP, but direct assessment of the effects of MPP+ in brain is difficult. Therefore, we have sought to define the mechanism of peripheral MPP+ toxicity in the rat and mouse. Systemically administered MPP+ produced its major pathology in the lung and was typified by perivascular edema. An increase in plasma glutathione disulfide concentrations also resulted, suggesting that MPP+ in analogy to paraquat produces oxidative stress. In addition, the lethality of MPP+ in the mouse was increased by dietary selenium deficiency. These results define in both pathological and chemical terms the potent systemic toxicity of MPP+ and suggest that MPP+, because of its high concentration in primate brain, has the potential to play an important role in the CNS toxicity of MPTP.  相似文献   

2.
Adult neurogenesis in rodents has been extensively studied. Here, we briefly summarize the studies of adult neurogenesis based on non-human primate brains and human postmortem brain samples in recent decades. The differences between rodent, primate and human neurogenesis are discussed. We conclude that these differences may contribute to distinct physiological roles and the self-repair mechanisms in the brain across species.  相似文献   

3.
J Luthman  G Jonsson 《Medical biology》1986,64(2-3):95-102
The effect of systemic administration of the parkinsonism-inducing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its metabolite MPP+ (1-methyl-4-phenylpyridine) on sympathetic adrenergic nerves in mouse iris and atrium has been investigated employing histo- and neurochemical techniques. The results indicate that MPTP does not have any potent neurotoxic effects on sympathetic adrenergic nerves. The effects of MPTP noted appear mainly to be restricted to a noradrenaline (NA) -depleting action and an acutely transient impairment of the NA uptake mechanism. This latter effect could be counteracted by monoamine oxidase inhibition. MPP+ was found to have more potent neurotoxic actions than MPTP as reflected i.e. by a patchy loss of histochemically demonstrable adrenergic nerves in iris which persisted for at least 7 days. Pretreatment with the NA uptake blocker desipramine antagonised the effects of MPP+, indicating that neurotoxicity is mediated via the NA uptake mechanism. The difference in neurotoxic potency of MPTP between sympathetic adrenergic nerves and central catecholamine neurons might be related to differences in metabolism of MPTP in the CNS and the periphery and/or due to the sympathetic adrenergic nerves being more resistant towards the cytotoxic actions following MPTP administration.  相似文献   

4.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and its metabolite, 1-methyl-4-phenylpyridine (MPP+), have been shown to cause a number of lesions in dopaminergic pathways of the nigro-striatal region of the brain. However, data on the effects of these neurotoxins on other aspects of brain metabolism are scarce. The data presented here show that MPTP and MPP+ inhibit glucose oxidation via the tricarboxylic acid cycle, and acetylcholine synthesis in synaptosomal preparations from rat forebrain. Monoamine oxidase B inhibitors (e.g., pargyline, MDL 72145) relieve the inhibition caused by MPTP but not MPP+. The inhibitory effects of MPP+ on glucose oxidation and acetylcholine synthesis are a consequence of the decreased glucose metabolism in synaptosomes and are consistent with its role as an inhibitor of the Complex I (NADH-CoQ reductase) of the mitochondrial respiratory chain.  相似文献   

5.
We investigated in vivo the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the brain and liver of rats 45 min after the systemic administration of 50 mg/kg of the neurotoxin. The metabolites present in brain and liver extracts were identified through multiple analytical methods by comparison to authentic compounds obtained from a number of chemical oxidations of MPTP. Our results indicate the presence of approximately 15% unreacted MPTP and relatively large amounts of both 1-methyl-4-phenylpyridinium (MPP+) and a mixture of three nonpolar lactams: 1-methyl-4-phenyl-5,6-dihydro-2(1H)-pyridinone, 1-methyl-4-phenyl-2(1H)-pyridinone, and a previously unreported metabolite 1-methyl-4-phenyl-2-piperidinone. Whereas MPP+ was more prevalent in the brain than in the liver, the lactam metabolites were more predominant in the liver. The amounts of the N-oxide and N-demethylated metabolites of MPTP were minimal.  相似文献   

6.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is rapidly metabolized to a 1-methyl-4-phenylpyridinium species (MPP+) in the squirrel monkey. After administration of toxic doses of MPTP, the concentration of MPP+ in the substantia nigra appears to increase during the first 72 hours, reaching the highest concentration of any central nervous system (CNS) tissue studied. In contrast, the concentration of this compound in other brain areas suggested time dependent elimination during the same period. Pretreatment of animals with the monoamine oxidase (MAO) inhibitor pargyline blocks both the neurotoxic action and the biotransformation of MPTP. In animals given pargyline and MPTP, initial MPTP levels are much higher in all brain regions than in those not receiving pargyline, but by 12 hours, MPTP levels had fallen rapidly in all regions except the substantia nigra and the eye. It may be that the selective toxicity of MPTP is related in some way to the accumulation of its oxidized metabolite in the substantia nigra.  相似文献   

7.
The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces a parkinsonian syndrome in humans and primates. We have previously found that metabolism of MPTP to a quaternary species is necessary for the expression of its neurotoxic effects. We now report that the metabolism of MPTP occurs in primate brain tissue in vitro, and present a model of MPTP neurotoxicity which incorporates our findings to date.Since the toxicity of MPTP is metabolism dependent, we propose that the in vitro metabolism of MPTP by brain tissue should provide a useful model for studying selected aspects of MPTP neurotoxicity.  相似文献   

8.
It has been suggested (Chiba et al., Biochem. Biophys. Res. Communs. (1984) 120, 574) that the neurotoxic effects of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which causes Parkinsonian symptoms in humans and other primates, are due to compounds resulting from the oxidation of MPTP by monoamine oxidase B in the brain. We reported recently that both monoamine oxidase A and B oxidize MPTP to MPDP+, the 2,3-dihydropyridinium form and that the reaction is accompanied by time-dependent, irreversible inactivation of the enzymes. Of the two forms of monoamine oxidase, the B enzyme oxidizes MPTP more rapidly and is also more sensitive to inactivation. We now wish to report that MPTP, as well as its oxidation products, MPDP+ and MPP+, the 4-phenylpyridinium form, are also potent reversible, competitive inhibitors of both monoamine oxidase A and B, particularly the former, and that the order of inhibition for the A enzyme is MPDP+ greater than MPP+ greater than MPTP, while for the B enzyme MPTP greater than MPDP+ greater than MPP+. We further report on the spectral changes and isotope incorporation accompanying the irreversible inactivation.  相似文献   

9.
S P Bagchi 《Life sciences》1992,51(5):389-396
The present study has examined the effects of systemically administered MPTP and MPP+ upon striatal DA and Dopac of C57 mice, also treated concurrently with either saline or reserpine. MPTP followed by saline did not affect DA level but decreased that of Dopac only at 5.0 mg/kg and higher dosages. The potency of MPTP affecting DA increased greatly when the neurotoxicant was followed by either 5.0 or 10.0 mg/kg reserpine; MPTP at 0.10 mg/kg and higher dosages significantly reversed the DA depleting effects of reserpine. MPP+ (1.0 or 10.0 mg/kg) with saline did not affect either DA or Dopac. In contrast, MPP+ at 0.10 mg/kg and higher dosages, when followed by 10.0 mg/kg reserpine, dose-dependently enhanced the DA depleting effects of reserpine. In agreement with the earlier results obtained in vitro, the present study indicates that MPTP administration at trace level dosages may lead to an inhibition of MAO in vivo. The effect of systemically given MPP+ on DA, however, appears to be more complex in nature, conceivably comprised of actions at the striatal neurones including the intraneuronal vesicles and, possibly, at the substantia nigra which may affect striatum in turn. That MPP+ may have reached brain areas in these experiments is also indicated by the observation of a significant striatal level of 3H-MPP+ after its systemic administration. In conclusion, irrespective of MPTP and MPP+ action mechanisms, trace levels of these neurotoxicants appear to affect brain dopamine neurons.  相似文献   

10.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on activities of enzyme complexes in the electron transport system were studied using isolated mitochondrial preparations from C57BL/6J mouse brains. Both MPTP and MPP+ dose-dependently inhibited activity of NADH-ubiquinone oxidoreductase (EC 1.6.5.3). The inhibition was reversible. Preincubation of freeze-thawed mitochondria with MPTP or MPP+ had no effect on the inhibition; however, when nonfrozen mitochondria were used, NADH-ubiquinone oxidoreductase activity was reduced to 46% of that in the nonincubated sample after a 5-min preincubation with MPTP and to 77% of that in the nonincubated sample after a 5-min preincubation with MPP+. Kinetic analyses revealed that inhibition of MPTP was noncompetitive and that of MPP+ uncompetitive with respect to NADH. On the other hand, inhibition of MPTP was uncompetitive and that of MPP+ noncompetitive with respect to ubiquinone. Succinate-ubiquinone oxidoreductase (complex II), dihydroubiquinone-cytochrome c oxidoreductase (complex III), and ferrocytochrome c-oxygen oxidoreductase (EC 1.9.3.1) activities were either slightly inhibited or not inhibited by MPTP or MPP+. The significance of these findings is discussed in relation to the mechanism of MPTP-induced neuronal degeneration.  相似文献   

11.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

12.
One hour after MPTP was given to mice at a dose of 30 mg/kg s.c., its concentration in tissues varied in the order kidney greater than liver greater than lung greater than brain greater than heart. When the same dose of MPTP was given orally, concentrations in most tissues were much lower at 1 hr than after s.c. administration, although the MPTP concentration in liver was only slightly lower. The concentrations of MPP+ (a metabolite of MPTP) at 1 hr were as high or higher than those of MPTP in all tissues except kidney, and MPP+ disappeared from the various tissues with half-lives from 3-20 hrs. The highest concentrations of MPP+, both absolute and relative to MPTP, were in heart. After oral administration of MPTP, no MPP+ was found in brain, and MPP+ concentrations in other tissues were lower than those after s.c. dosing. The depletion of heart norepinephrine was similar after MPTP administration by either route of administration even though MPTP and MPP+ concentrations in heart were lower after oral administration, suggesting that other metabolites of MPTP might also contribute to heart norepinephrine depletion.  相似文献   

13.
MPTP, MPP+ and mitochondrial function   总被引:8,自引:0,他引:8  
1-Methyl-4-phenylpyridinium (MPP+), the putative toxic metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), inhibited NAD(H)-linked mitochondrial oxidation at the level of Complex I of the electron transport system. MPTP and MPP+ inhibited aerobic glycolysis in mouse striatal slices, as measured by increased lactate production; MPTP-induced effects were prevented by inhibition of monoamine oxidase B activity. Several neurotoxic analogs of MPTP also form pyridinium metabolites via MAO; these MPP+ analogs were all inhibitors of NAD(H)-linked oxidation by isolated mitochondria. 2'-Methyl-MPTP, a more potent neurotoxin in mice than MPTP, was also more potent than MPTP in inducing lactate accumulation in mouse brain striatal slices. Overall, the studies support the hypothesis that compromise of mitochondrial oxidative capacity is an important factor in the mechanisms underlying the toxicity of MPTP and similar compounds.  相似文献   

14.
Liou HH  Hsu HJ  Tsai YF  Shih CY  Chang YC  Lin CJ 《Life sciences》2007,81(8):664-672
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.  相似文献   

15.
1-methyl-4-phenylpyridine (MPP+) is the putative toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is structurally similar to the herbicide paraquat (PQ++). We have therefore compared the effects of MPP+ and PQ++ on a well characterized experimental model, namely isolated rat hepatocytes. PQ++ generates reactive oxygen species within cells by redox cycling and its toxicity to hepatocytes was potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. In BCNU-treated cells, PQ++ caused GSH depletion, lipid peroxidation and cell death. These cytotoxic effects were prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) and the iron-chelating agent desferrioxamine. MPP+ also caused GSH depletion in BCNU-treated hepatocytes but its cytotoxicity was not markedly affected by BCNU, nor was it accompanied by significant lipid peroxidation. DPPD and desferrioxamine also failed to prevent MPP+-induced cell death. We conclude that the production of active oxygen species is likely to play a major role in PQ++ cytotoxicity, while MPP+-induced cell damage may involve additional, more important toxic mechanisms.  相似文献   

16.
The biotransformation of MPTP and disposition of MPP+: the effects of aging   总被引:1,自引:0,他引:1  
The primary objective of this study was to investigate possible biochemical correlates of the enhanced effects of MPTP with aging in C57BL/6 mice. Striatal MPP+ concentrations were found to increase directly with the age of the animals injected (range 6 to 32 weeks). In vitro studies confirmed an enhanced rate of production of MPP+ in striatum, ventral mesencephalon, and frontal cortex in older animals. The rate of clearance of MPP+ from striatum was approximately the same in 6-8 week old mice as in 8 month old mice, but the total exposure of this brain region to MPP+ was approximately three times greater when older animals were compared to younger ones given equivalent doses of MPTP. These results are compatible with increased MPP+ production (i.e., a pharmacokinetic effect) as the explanation for the increased dopamine depletion induced by MPTP in older animals. We suggest that this approach may provide a new avenue of investigation for the study of neurodegenerative phenomena and the aging process.  相似文献   

17.
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also results in the selective intracellular accumulation of MPP+. Conversion to MPP+ is more rapid and extensive after exposure to MPDP+, than with MPTP and the former is also more toxic. Addition of MPP+ itself is toxic to hepatocytes but only after a long lag period, which presumably reflects its limited access to the cell and its relatively slow intracellular accumulation. As previously shown with MPTP and MPP+, the cytotoxicity of MPDP+ is dose-dependent and is consistently preceeded by complete depletion of intracellular ATP. Similar to MPP+ but not MPTP, MPDP+ causes a comparable rate and extent of cytotoxicity and ATP loss in hepatocytes pretreated with the monoamine oxidase inhibitor pargyline. Pargyline blocks hepatocyte biotransformation of MPTP to MPP+, but it has no significant effect on MPP+ accumulation after exposure to either MPDP+ or MPP+. It is concluded that MPTP is toxic to hepatocytes via its monoamine oxidase-dependent metabolism and that MPP+ is likely to be the ultimate toxic metabolite which accumulates in the cell, causing ATP depletion and eventual cell death.  相似文献   

18.
Wu WR  Zhu ZT  Zhu XZ 《Life sciences》2000,67(3):241-250
The present studies investigated the effects of L-deprenyl, 1-methyl-4-phenylpyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the efflux of dopamine and its metabolites in microdialysates of striatum and nucleus accumbens in rats. L-Deprenyl or L-amphetamine perfusion into striatum had no effects on basal dopamine efflux, though L-deprenyl reduced the basal efflux of dihydroxyphenylacetic acid and homovanillic acid. MPP+ or MPTP perfusion into striatum significantly increased the dopamine efflux, and the action of MPTP was more potent than that of MPP+. Pretreatment with L-deprenyl antagonized the actions of MPP+ and MPTP. The striatal dopamine efflux of rats was gradually restored by itself after the overflow caused by 2-h perfusion of the dopaminergic neurotoxins, while L-deprenyl could not accelerate the recovery. Perfusion with L-deprenyl or L-amphetamine, but not pargyline, into nucleus accumbens increased the dopamine efflux in a dose-dependent fashion, which could be antagonized by haloperidol pretreatment. MPP+ or MPTP perfusion into nucleus accumbens also increased the dopamine efflux, and the action of MPTP was also more potent than that of MPP+. Pretreatment with L-deprenyl could not antagonize the actions of MPP+ and MPTP. These findings suggest that L-deprenyl, MPP+ and MPTP induce differential effects on nigrostriatal and mesolimbic dopaminergic pathways in vivo. L-Deprenyl has neuroprotective rather than neurorestorative action against MPP+- and MPTP-induced dopamine overflow from striatum. Further, L-deprenyl-induced dopamine overflow from nucleus accumbens may explain the amphetamine-like reinforcing property of L-deprenyl.  相似文献   

19.
Acetyl-L-carnitine (ALCAR) is intimately involved in the transport of long chain fatty acids across the inner mitochondrial membrane during oxidative phosphorylation. ALCAR also has been reported to attenuate the occurrence of parkinsonian symptoms associated with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) in vivo, and protects in vitro against the toxicity of the neurotoxic 1-methyl-4-phenylpyridinium (MPP+) metabolite of MPTP. The mechanism for these protective effects remains unclear. ALCAR may attenuate hydroxyl (HO*) free radical production in the MPTP/MPP+ neurotoxic pathway through several mechanisms. Most studies on MPTP/MPP+ toxicity and protection by ALCAR have focused on in vivo brain chemistry and in vitro neuronal culture studies. The present study investigates the attenuative effects of ALCAR on whole body oxidative stress markers in the urine of rats treated with MPTP. In a first study, ALCAR totally prevented the MPTP-induced formation of HO* measured by salicylate radical trapping. In a second study, the production of uric acid after MPTP administration-a measure of oxidative stress mediated through xanthine oxidase-was also prevented by ALCAR. Because ALCAR is unlikely to be a potent radical scavenger, these studies suggest that ALCAR protects against MPTP/MPP+-mediated oxidative stress through other mechanisms. We speculate that ALCAR may operate through interference with organic cation transporters such as OCTN2 and/or carnitine-acylcarnitine translocase (CACT), based partly on the above findings and on semi-empirical electronic similarity calculations on ALCAR, MPP+, and two other substrates for these transporters.  相似文献   

20.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a contaminant found in a synthetic illicit drug, can elicit in humans and monkeys a severe extrapyramidal syndrome similar to Parkinson's disease. It also induces alterations of the dopamine (DA) pathways in rodents. MPTP neurotoxicity requires its enzymatic transformation into 1-methyl-4-phenylpyridinium (MPP+) by monoamine oxidase followed by its concentration into target cells, the DA neurons. Here, we show that mesencephalic glial cells from the mouse embryo can take up MPTP in vitro, transform it into MPP+, and release it into the culture medium. MPTP is not taken up by neurons from either the mesencephalon or the striatum in vitro (8 days in serum-free conditions). However, mesencephalic neurons in culture revealed a high-affinity uptake mechanism for the metabolite MPP+, similar to that for DA. The affinity (Km) for DA uptake is fivefold higher than that for MPP+ (0.2 and 1.1 microM, respectively), whereas the number of uptake sites for MPP+ is double (Vmax = 25 and 55 pmol/mg of protein/min for DA and MPP+, respectively). Mazindol, a DA uptake inhibitor, blocks the uptake of DA and MPP+ equally well under these conditions. Moreover, by competition experiments, the two molecules appear to use the same carrier(s) to enter DA neurons. Small concentrations of MPP+ are also taken up by striatal neurons in vitro. The amount taken up represented less than 10% of the MPP+ uptake in mesencephalic neurons. Depolarization induced by veratridine released comparable proportions of labeled DA and MPP+ from mesencephalic cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号