首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt was made to convert the N-glycan structures in Raphanus sativus seeds during germination with a view to develop a method for regulating the N-glycan structures using glycosidase inhibitors. The N-glycan structures of glycoproteins in the roots of seedlings germinated for three days were analyzed by hydrazinolysis followed by N-acetylation, pyridylamination and HPLC. Pyridylaminated sugar chains obtained in the absence of the inhibitors had plant type structures consisting of Man(3)FucXylGlcNAc(2)(M3FX), Man(5-9)GlcNAc(2)(high-Man) and GlcNAc(1-2)Man(3)FucXylGlcNAc(2)(GnM3FX and Gn2M3FX). When germinated in the presence of a glucosidase inhibitor (castanospermine or deoxynojirimycin), the amount of glucosyl high-Man-type structure increased and plant growth was inhibited. When germinated in the presence of a mannosidase inhibitor (swainsonine or deoxymannojirimycin), the amount of the high-Man-type structure increased and that of M3FX was low, and the growth was normal. In the presence of 2-acetamido 1, 2 di-deoxynojirimycin, those of GnM3FX and Gn2M3FX increased and the growth was normal. These results show that the N-glycan processing in both the endoplasmic reticulum (ER) and Golgi apparatus can be controlled artificially using glycosidase inhibitors, and that the glucosidase inhibitors could be useful for the study of the function of N-glycans in plants.  相似文献   

2.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

3.
The presence of typical plant-type N-glycans (eg, M3FX, Gn2M3FX, and Le(a)2M3FX) in mosses, ferns, and other organisms was examined to determine which plant initially acquired glycosyltransferases to produce plant-type N-glycans during organic evolution. No M3FX-type N-glycan was detected in lichens (Cladonia humilis) or in any one of the three preland plants Enteromorpha prolifera, Ulva pertusa Kjellman, and Chara braunii Gmelin. In Bryophyta, M3FX-type N-glycan was detected at trace amounts in Anthocerotopsida (hornworts) and at certain amounts in Bryopsida (mosses), but not in Hepaticopsida (liverworts). Le(a)2M3FX was detected in some Bryopsida of relatively high M3FX content. Most Tracheophyta (ferns and higher plants) contained the three typical M3FX-type glycans as the main N-glycans in different ratios. These results suggest that organisms acquired xylosyltransferase and fucosyltransferase during the development of mosses from liverworts, and that later all plants retained both enzymes. Bryopsida have also obtained galactosyltransferase and fucosyltransferase to synthesize the Le(a) antigen.  相似文献   

4.
The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).  相似文献   

5.
In our previous study (Woo, K. K., et al., Biosci. Biotechnol. Biochem., 68, 2547-2556 (2004), we purified an alpha-mannosidase from Ginkgo biloba seeds; it was activated by cobalt ions and highly active towards high-mannose type free N-glycans occurring in plant cells. In the present study, we have found that the substrate specificity of Ginkgo alpha-mannosidase is significantly regulated by cobalt ions. When pyridylamino derivative of Man9GlcNAc2 (M9A) was incubated with Ginkgo alpha-mannosidase in the absence of cobalt ions, Man5GlcNAc2-PA (M5A) having no alpha1-2 mannosyl residue was obtained as a major product. On the other hand, when Man9GlcNAc2-PA was incubated with alpha-mannosidase in the presence of Co2+ (1 mM), Man3-1GlcNAc2-PA were obtained as major products releasing alpha1-3/6 mannosyl residues in addition to alpha1-2 mannosyl residues. The structures of the products (Man8-5GlcNAc2-PA) derived from M9A by enzyme digestion in the absence of cobalt ions were the same as those in the presence of cobalt ions. These results clearly suggest that the trimming pathway from M9A to M5A is not affected by the addition of cobalt ions, but that hydrolytic activity towards alpha1-3/6 mannosyl linkages is stimulated by Co2+. Structural analysis of the products also showed clearly that Ginkgo alpha-mannosidase can produce truncated high-mannose type N-glycans, found in developing or growing plant cells, suggesting that alpha-mannosidase might be involved in the degradation of high-mannose type free N-glycans.  相似文献   

6.
N-Glycans of Entamoeba histolytica, the protist that causes amebic dysentery and liver abscess, are of great interest for multiple reasons. E. histolytica makes an unusual truncated N-glycan precursor (Man(5)GlcNAc(2)), has few nucleotide sugar transporters, and has a surface that is capped by the lectin concanavalin A. Here, biochemical and mass spectrometric methods were used to examine N-glycan biosynthesis and the final N-glycans of E. histolytica with the following conclusions. Unprocessed Man(5)GlcNAc(2), which is the most abundant E. histolytica N-glycan, is aggregated into caps on the surface of E. histolytica by the N-glycan-specific, anti-retroviral lectin cyanovirin-N. Glc(1)Man(5)GlcNAc(2), which is made by a UDP-Glc: glycoprotein glucosyltransferase that is part of a conserved N-glycan-dependent endoplasmic reticulum quality control system for protein folding, is also present in mature N-glycans. A swainsonine-sensitive alpha-mannosidase trims some N-glycans to biantennary Man(3)GlcNAc(2). Complex N-glycans of E. histolytica are made by the addition of alpha1,2-linked Gal to both arms of small oligomannose glycans, and Gal residues are capped by one or more Glc. In summary, E. histolytica N-glycans include unprocessed Man(5)GlcNAc(2), which is a target for cyanovirin-N, as well as unique, complex N-glycans containing Gal and Glc.  相似文献   

7.
The structures of sugar chains of the glycoproteins from the microsomal fraction of developing castor bean endosperms have been analyzed. The structural analyses were done by a fluorescence method combined with component analysis, exoglycosidase digestions, partial acetolysis, Smith degradation, and 1H-NMR spectroscopy. The estimated structures fell into three categories; the first was oligomannose-type, the second xylomannose-type, the third complex-type. Among these oligosaccharides, Man3Fuc1Xyl1GlcNAc2 (M3FX) and Man6GlcNAc2 (M6B) were the major structures. The structures of Man4GlcNAc2 (M4C) and Man4Xyl1GlcNAc2 (M4X) have also been found in the microsomal glycoproteins of the developing bean endosperms. These results could indicate that the structures of M4C, M4X, and M3FX are formed in the stage of sugar chain processing in the microsomal fraction, in which oligomannose-type sugar chains are modified into complex-type ones by several kinds of processing enzymes.  相似文献   

8.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry. The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing beta1-2 xylosyl and/or alpha1-3 fucosyl residue(s) and occurrence of beta1-4GlcNAc residue in the insect glycoproteins. The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man(9 to approximately 4)GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3 GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1 Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3 Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of beta-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a beta1-4 linkage N-acetylglucosaminyl residue.  相似文献   

9.
A Japanese cypress (Chamaecyparis obtusa) pollen allergen, Cha o 1, is one of the major allergens that cause allergic pollinosis in Japan. Although it has been found that Cha o 1 is glycosylated and that the amino acid sequence is highly homologous with that of Japanese cedar pollen allergen (Cry j 1), the structure of N-glycans linked to Cha o 1 remains to be determined. In this study, therefore, we analyzed the structures of the N-glycans of Cha o1. The N-glycans were liberated by hydrazinolysis from purified Cha o 1, and the resulting sugar chains were N-acetylated and pyridylaminated. The structures of pyridylaminated N-glycans were analyzed by a combination of exoglycosidase digestion, two dimensional (2D-) sugar chain mapping, and electrospray ionization mass spectrometry analysis. Structural analysis indicated that the major N-glycan structure of Cha o1 is GlcNAc2Man3Xyl1Fuc1GlcNAc2 (89%), and that high-mannose type structures (Man9GlcNAc2, Man7GlcNAc2) occur as minor components (11%).  相似文献   

10.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

11.
Free N-glycans (FNGs) are ubiquitous in growing plants. Further, acidic peptide:N-glycanase is believed to be involved in the production of plant complex-type FNGs (PCT-FNGs) during the degradation of dysfunctional glycoproteins. However, the distribution of PCT-FNGs in growing plants has not been analyzed. Here, we report the occurrence of PCT-FNGs in the xylem sap of the stem of the tomato plant.

Abbreviations: RP-HPLC: reversed-phase HPLC; SF-HPLC: size-fractionation HPLC; PA-: pyridylamino; PCT: plant complex type; Hex: hexose; HexNAc: N-acetylhexosamine; Pen: pentose; Deoxyhex: deoxyhexose; Man: D-mannose; GlcNAc: N-acetyl-D-glucosamine; Xyl: D-xylose; Fuc: L-fucose; Lea: Lewis a (Galβ1-3(Fucα1-4)GlcNAc); PCT: plant complex type; M3FX: Manα1-6(Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; GN2M3FX: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA; (Lea)1GN1M3FX: Galβ1-3(Fucα1-4)GlcNAc1-2 Manα1-6(GlcNAcβ1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA or GlcNAc1-2Manα1-6(Galβ1-3(Fucα1-4)GlcNAc1-2Manα1-3)(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc-PA.  相似文献   


12.
B Priem  R Gitti  C A Bush    K C Gross 《Plant physiology》1993,102(2):445-458
The concentration-dependent stimulatory and inhibitory effect of N-glycans on tomato (Lycopersicon esculentum Mill.) fruit ripening was recently reported (B. Priem and K.C. Gross [1992] Plant Physiol 98: 399-401). We report here the structure of 10 free N-glycans in mature green tomatoes. N-Glycans were purified from fruit pericarp by ethanolic extraction, desalting, concanavalin A-Sepharose chromatography, and amine-bonded silica high performance liquid chromatography. N-Glycan structures were determined using 500 MHz 1H-nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry, and glycosyl linkage methylation analysis by gas chromatography-mass spectrometry. A novel arabinosyl-containing N-glycan, Man alpha 1-->6(Ara alpha 1-->2)Man beta 1-->4GlcNAc beta 1-->4(Fuc alpha 1-->3)GlcNAc, was purified from a retarded concanavalin A fraction. The location of the arabinosyl residue was the same as the xylosyl residue in complex N-glycans. GlcNAc[5']Man3(Xyl)GlcNAc(Fuc)GlcNAc and GlcNAc[5']Man2GlcNAc(Fuc)GlcNAc were also purified from the weakly retained fraction. The oligomannosyl N-glycans Man5GlcNAc, Man6GlcNAc, Man7GlcNAc, and Man8GlcNAc were purified from a strongly retained concanavalin A fraction. The finding of free Man5GlcNAc in situ was important physiologically because previously we had described it as a promoter of tomato ripening when added exogenously. Mature green pericarp tissue contained more than 1 microgram of total free N-glycan/g fresh weight. Changes in N-glycan composition were determined during ripening by comparing glycosyl and glycosyl-linkage composition of oligosaccharidic extracts from fruit at different developmental stages. N-Glycans were present in pericarp tissue at all stages of development. However, the amount increased during ripening, as did the relative amount of xylosyl-containing N-glycans.  相似文献   

13.
Golgi alpha-mannosidase II is an enzyme that processes the intermediate oligosaccharide Gn(1)M(5)Gn(2) to Gn(1)M(3)Gn(2) during biosynthesis of N-glycans. Previously, we isolated a cDNA encoding a protein homologous to alpha-mannosidase II and designated it alpha-mannosidase IIx. Here, we show by immunocytochemistry that alpha-mannosidase IIx resides in the Golgi in HeLa cells. When coexpressed with alpha-mannosidase II, alpha-mannosidase IIx colocalizes with alpha-mannosidase II in COS cells. A protein A fusion of the catalytic domain of alpha-mannosidase IIx hydrolyzes a synthetic substrate, 4-umbelliferyl-alpha-D-mannoside, and this activity is inhibited by swainsonine. [(3)H]glucosamine-labeled Chinese hamster ovary cells overexpressing alpha-mannosidase IIx show a reduction of M(6)Gn(2) and an accumulation of M(4)Gn(2). Structural analysis identified M(4)Gn(2) to be Man alpha 1-->6(Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc. The results suggest that alpha-mannosidase IIx hydrolyzes two peripheral Man alpha 1-->6 and Man alpha 1-->3 residues from [(Man alpha 1-->6)(Man alpha 1-->3)Man alpha 1-->6](Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc, during N-glycan processing.  相似文献   

14.
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.  相似文献   

15.
N-linked glycans of wall-bound exo- β -glucanases from mung bean and barley seedlings, namely Mung-ExoI and Barley-ExoII, were characterized. The N-linked glycans of Mung-ExoI and Barley-ExoII were liberated by gas-phase hydrazinolysis followed by re-N-acetylation. Their structures were determined by two-dimensional sugar-mapping analysis and MALDI-TOF mass spectrometry. N-glycans from both glucanases were of paucimannosidic-type (small complex-type) structures, Man α 1-6(±Man α 1-3)(Xyl β 1-2)Man β 1-4GlcNAc β 1-4(±Fuc α 1-3) GlcNAc, which are known as typical vacuole-type N-glycans. The results suggest that N-glycans of cell-wall glucanase were produced by partial trimming of complex-type N-glycans by exoglycosidases during its transport from Golgi apparatus to cell walls or in the cell walls.  相似文献   

16.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

17.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean alpha-mannosidase digestion, alpha-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man 9 approximately 5 GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man 9 approximately 5 GlcNAc1) in the soybean seedlings have a common core structural unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

18.
From a fresh sample (1 kg) of cultivated red alga Kappaphycus striatum, three isolectins, KSA-1 (15.1 mg), KSA-2 (58.0 mg) and KSA-3 (6.9 mg), were isolated by a combination of extraction with aqueous ethanol, ethanol precipitation, and ion exchange chromatography. Isolated KSAs were monomeric proteins of about 28 kDa having identical 20 N-terminal amino acid sequences to each other. Their hemagglutination activities were not inhibited by monosaccharides, but inhibited by glycoproteins bearing high-mannose N-glycans. In a binding experiment with pyridylaminated oligosaccharides by centrifugal ultrafiltration-HPLC assay, the isolectin KSA-2 was exclusively bound to high-mannose type N-glycans, but not to other glycans. Including complex types and a pentasaccharide core of N-glycans, indicating that it recognized branched oligomannosides. The binding activity of KSA-2 was slightly different among high-mannose N-glycans examined, indicating that the lectin has a higher affinity for those having the exposed (α1-3) Man in the D2 arm. On the other hand, KSA-2 did not bind to a free oligomannose that is a constituent of the branched oligomannosides, implying that the portion of the core GlcNAc residue(s) of the N-glycans is also essential for binding. Thus, KSA-2 appears to recognize the extended carbohydrate structure with a minimal length of a tetrasaccharide, Man(α1-3)Man(α1-6)Man(β1-4)GlcNAc. This study indicates that K. striatum, which has extensively been cultivated as a source of carrageenan, is a good source of a valuable lectin(s) that is strictly specific for high-mannose N-glycans.  相似文献   

19.
Elsewhere, we characterized the structure of twelve N-glycans purified from royal jelly glycoproteins (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000)). Structural analysis showed that the typical high-mannose type structure (Man9-4GlcNAc2) accounts for about 72% of total N-glycans, a biantennary-type structure (GlcNAc2Man3GlcNAc2) about 8%, and a hybrid-type structure (GlcNAc1Man4GlcNAc2) about 3%. During structural analysis of minor N-glycans of royal jelly glycoproteins, we found that one had an N-acetyl-galactosaminyl residue at the non reducing end; most of such residues have been found in N-glycans of mammalian glycoproteins. By exoglycosidase digestion, methylation analysis, ion-spray (IS)-MS analysis, and 1H NMR spectroscopy, we identified the structure of the N-glycan containing GalNAc as; GlcNAc(beta)1-2Man(alpha)1-6(GalNAcbeta1 - 4GIcNAcbeta1 - 2Man(alpha)1 - 3)Manbeta1 - 4GlcNAc(beta)1-4GlcNAc. This result suggested that a beta1-4 GalNAc transferase is present in hypopharyngeal and mandibular glands of honeybees.  相似文献   

20.
The synthesis of complex asparagine-linked glycans (N-glycans) involves a multi-step process that starts with a five mannose N-glycan structure: [Manα1-6(Manα1-3)Manα1-6][Manα1-3]-R where R?=?Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-protein. N-acetylglucosaminyltransferase I (GlcNAc-TI) first catalyzes addition of GlcNAc in β1-2 linkage to the Manα1-3-R terminus of the five-mannose structure. Mannosidase II then removes two Man residues exposing the Manα1-6 terminus that serves as a substrate for GlcNAc-T II and addition of a second GlcNAcβ1-2 residue. The resulting structure is the complex N-glycan: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)-R. This structure is the precursor to a large assortment of branched complex N-glycans involving four more N-acetylglucosaminyltransferases. This short review describes the experiments (done in the early 1970s) that led to the discovery of GlcNAc-TI and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号