首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatographic mass spectrometric (LC/MS/MS) method has been developed for the determination of loperamide in whole blood and other biological specimens. The procedure involves liquid-liquid extraction of loperamide, desmethylloperamide and methadone-D3 (internal standard) with butyl acetate. Confirmation and quantification was done by positive electrospray ionisation with a triple quadrupole mass spectrometer operating in multiple reaction-monitoring (MRM) mode. Two MRM transitions of each compound were established and identification criteria were set up based on the ratio of the responses between the two MRM transitions of each compound. The standard curves were linear over a working range of 0.1-500 microg/kg for all transitions. The limit of quantification was 0.1 microg/kg in whole blood. The repeatability and reproducibility within the laboratory expressed by relative standard deviation were less than 5 and 11%, respectively, and the accuracy was better than 9%. The method was developed to examine a feces sample from a child whose mother was suspected of Münchausen syndrome by proxy and it proved to be suitable for forensic cases being simple, selective and reproducible. The method was also applied for a case investigation involving a overdose of loperamide.  相似文献   

2.
3.
AIM: In forensic toxicology it is important to have specific and sensitive analysis for quantification of illicit drugs in biological matrices. This paper describes a quantitative method for determination of cocaine and its major metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and urine by liquid chromatography coupled with tandem mass spectrometry LC/MS/MS. METHOD: The sample pre-treatment (0.20 g) consisted of acid precipitation, followed by centrifugation and solid phase extraction of supernatant using mixed mode sorbent columns (SPEC MP1 Ansys Diag. Inc.). Chromatographic separation was performed at 30 degrees C on a reverse phase Zorbax C18 column with a gradient system consisting of formic acid, water and acetonitrile. The analysis was performed by positive electrospray ionisation with a triple quadropole mass spectrometer operating in multiple reaction monitoring (MRM) mode. Two MRM transitions of each analyte were established and identification criteria were set up based on the retention time and the ion ratio. The quantification was performed using deuterated internal analytes of cocaine, benzoylecgonine and ecgonine methyl ester. The calibration curves of extracted standards were linear over a working range of 0.001-2.00 mg/kg whole blood for all analytes. The limit of quantification was 0.008 mg/kg; the interday precision (measured by relative standard deviation-%RSD) was less than 10% and the accuracy (BIAS) less than 12% for all analytes in whole blood. Urine samples were estimated semi-quantitatively at a cut-off level of 0.15 mg/kg with an interday precision of 15%. CONCLUSION: A liquid chromatography mass spectrometric (LC/MS/MS) method has been developed for confirmation and quantification of cocaine and its metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and semi-quantitative in urine. The method is specific and sensitive and offers thereby an excellent alternative to other methods such as GC-MS that involves derivatisation.  相似文献   

4.
This paper reviews liquid chromatographic–mass spectrometric (LC–MS) procedures for the identification and/or quantification of drugs of abuse, therapeutic drugs, poisons and/or their metabolites in biosamples (whole blood, plasma, serum, urine, cerebrospinal fluid, vitreous humor, liver or hair) of humans or animals (cattle, dog, horse, mouse, pig or rat). Papers published from 1995 to early 1997, which are relevant to clinical toxicology, forensic toxicology, doping control or drug metabolism and pharmacokinetics, were taken into consideration. They cover the following analytes: amphetamines, cocaine, lysergide (LSD), opiates, anabolics, antihypertensives, benzodiazepines, cardiac glycosides, corticosteroids, immunosuppressants, neuroleptics, non-steroidal anti-inflammatory drugs (NSAID), opioids, quaternary amines, xanthins, biogenic poisons such as aconitines, aflatoxins, amanitins and nicotine, and pesticides. LC–MS interface types, mass spectral detection modes, sample preparation procedures and chromatographic systems applied in the reviewed papers are discussed. Basic information about the biosample assayed, work-up, LC column, mobile phase, interface type, mass spectral detection mode, and validation data of each procedure is summarized in tables. Examples of typical LC–MS applications are presented.  相似文献   

5.
A rapid liquid chromatographic–tandem mass spectrometric (LC–MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC–MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 μg L?1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC–MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CCα) and the detection capability (CCβ) were found to be below the chosen validation level of 1 μg L?1 for all compounds.  相似文献   

6.
We present a comprehensive workflow for large scale (>1000 transitions/run) label‐free LC‐MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC‐MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label‐free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC‐MRM assay.  相似文献   

7.
Neurosteroids and neurosterols are found in brain at low levels (ng/g-microg/g) against a high background of cholesterol (mg/g). As such their analysis can be challenging. Traditionally, these molecules have been analysed by gas chromatography (GC)-mass spectrometry (MS), however, the absence of molecular ions in GC-MS spectra, even from derivatised molecules, can make the discovery and identification of novel neurosteroids/sterols difficult. To avoid this scenario, liquid chromatography (LC) combined with desorption ionisation methods are employed. In this review we discuss the application of LC-MS and LC-tandem mass spectrometry (MS/MS) for the identification of neurosteroids/sterols, paying particular attention to the use of low-flow-rate LC to maximise chromatographic and mass spectrometric performance.  相似文献   

8.
Analytical chemistry aims at developing analytical methods and techniques for unequivocal identification and accurate quantitation of natural and synthetic compounds in a given matrix. Analytical methods based on the mass spectrometry (MS) technology, e.g., GC/MS and LC/MS and their variants, GC/tandem MS and LC/tandem MS, are best suited both for qualitative and quantitative analyses. GC/MS methods not only serve as reference methods, e.g., in clinical chemistry, but they are now widely and routinely used for quantitative determination of numerous analytes. However, despite inherent accuracy, analytical methods based on GC/MS commonly consist of several analytical steps, including extraction and derivatization of the analyte. In general, unequivocal identification and accurate quantification of an analyte in very low concentrations in complex matrices require further chromatographic techniques, such as high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for sample purification. In recent years, affinity chromatography (e.g., boronate and immunoaffinity chromatography) has been developed to a superior technique for sample preparation of numerous classes of compounds in GC/MS. In this article, the application and importance of affinity chromatography as a method for sample preparation in modern quantitative GC/MS method is described and discussed, using as examples various natural and synthetic compounds, such as arachidonic acid derivates, nitrosylated and nitrated proteins, steroids, drugs, and toxins.  相似文献   

9.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

10.
Sphingolipids are a highly diverse category of bioactive compounds. This article describes methods that have been validated for the extraction, liquid chromatographic (LC) separation, identification and quantitation of sphingolipids by electrospray ionization, tandem mass spectrometry (ESI-MS/MS) using triple quadrupole (QQQ, API 3000) and quadrupole-linear-ion trap (API 4000 QTrap, operating in QQQ mode) mass spectrometers. Advantages of the QTrap included: greater sensitivity, similar ionization efficiencies for sphingolipids with ceramide versus dihydroceramide backbones, and the ability to identify the ceramide backbone of sphingomyelins using a pseudo-MS3 protocol. Compounds that can be readily quantified using an internal standard cocktail developed by the LIPID MAPS Consortium are: sphingoid bases and sphingoid base 1-phosphates, more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, and these complex sphingolipids with dihydroceramide backbones. With minor modifications, glucosylceramides and galactosylceramides can be distinguished, and more complex species such as sulfatides can also be quantified, when the internal standards are available. JLR LC ESI-MS/MS can be utilized to quantify a large number of structural and signaling sphingolipids using commercially available internal standards. The application of these methods is illustrated with RAW264.7 cells, a mouse macrophage cell line. These methods should be useful for a wide range of focused (sphingo)lipidomic investigations.  相似文献   

11.
Misuse of numerous beta-agonist drugs for their growth promoting effects in livestock production requires significant regulatory enforcement activities worldwide. The proof of illegal drug use needed for regulatory action usually requires the high degree of specificity derived from mass spectrometric analysis of suspect tissues and body fluids. In this paper, we describe a multiresidue screening method for confirmation of nine beta-agonist compounds in bovine liver and retina. A wide range of analyte structures was selected in order to demonstrate applicability to other chemically related beta-agonists for which standards are not currently available. The class-specific method, which is based on mixed mode cation exchange/reverse phase solid phase extraction, reverse phase gradient LC separation using a cyanopropyl-silica phase, and tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode, yields high analyte recoveries at the target level of 1 ppb (ng/g). In addition, acquisition of multiple MRM transitions for each analyte permits simultaneous confirmation of beta-agonists at the level of 1 ppb in liver and retina by using intensity ratios between fragment ions and protonated molecules. Estimated values for the limit of quantification (LOQ) for individual beta-agonists were 0.08-0.3 ppb in liver and 0.02-0.5 in retina; the estimated limits of confirmation, using accepted criteria from international regulatory agencies, were 0.25-0.8 ppb in liver and 0.1-1 ppb in retina. This method should be useful in supporting regulatory enforcement programs that monitor beta-agonist misuse.  相似文献   

12.
Mass spectrometry (MS) of glycoproteins is an emerging field in proteomics, poised to meet the technical demand for elucidation of the structural complexity and functions of the oligosaccharide components of molecules. Considering the divergence of the mass spectrometric methods employed for oligosaccharide analysis in recent publications, it is necessary to establish technical standards and demonstrate capabilities. In the present study of the Human Proteome Organisation (HUPO) Human Disease Glycomics/Proteome Initiative (HGPI), the same samples of transferrin and immunoglobulin-G were analyzed for N-linked oligosaccharides and their relative abundances in 20 laboratories, and the chromatographic and mass spectrometric analysis results were evaluated. In general, matrix-assisted laser desorption/ionization (MALDI) time-of-flight MS of permethylated oligosaccharide mixtures carried out in six laboratories yielded good quantitation, and the results can be correlated to those of chromatography of reductive amination derivatives. For underivatized oligosaccharide alditols, graphitized carbon-liquid chromatography (LC)/electrospray ionization (ESI) MS detecting deprotonated molecules in the negative ion mode provided acceptable quantitation. The variance of the results among these three methods was small. Detailed analyses of tryptic glycopeptides employing either nano LC/ESI MS/MS or MALDI MS demonstrated excellent capability to determine site-specific or subclass-specific glycan profiles in these samples. Taking into account the variety of MS technologies and options for distinct protocols used in this study, the results of this multi-institutional study indicate that MS-based analysis appears as the efficient method for identification and quantitation of oligosaccharides in glycomic studies and endorse the power of MS for glycopeptide characterization with high sensitivity in proteomic programs.  相似文献   

13.
Identification of new psychoactive substances (NPS) in biological and non-biological samples represents a hard challenge for forensic toxicologists. Their great chemical variety and the speed with which new NPS are synthesised and spread make stringent the need of advanced tools for their detection based on multidisciplinary approaches. For this reason, in August 2016, the “Unit of Research and Innovation in Forensic Toxicology and Neuroscience of Addiction” (U.R.I.To.N.) was founded by the Forensic Toxicology Division of the University of Florence. In this Research Unit, various professionals (i.e. forensic toxicologists, chemists, physicians) collaborate to study all the aspects of drugs of abuse, especially NPS. Herein, we describe the multidisciplinary approach comprising liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), gas chromatography hyphenated to mass spectrometry (GC–MS) and solution nuclear magnetic resonance analysis that allowed the identification of three NPS such as 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethan-1-one (bk-2C-B), and 3-(2-aminopropyl)indole (α-methyltryptamine) in seized materials.  相似文献   

14.
Quantification of fatty acids has been crucial to elucidate lipid biosynthesis pathways in plants. To date, fatty acid identification and quantification has relied mainly on gas chromatography (GC) coupled to flame ionization detection (FID) or mass spectrometry (MS), which requires the derivatization of samples and the use of chemical standards for annotation. Here we present an alternative method based on a simple procedure for the hydrolysis of lipids, so that fatty acids can be quantified by liquid chromatography mass spectrometry (LC‐MS) analysis. Proper peak annotation of the fatty acids in the LC‐MS‐based methods has been achieved by LC‐MS measurements of authentic standard compounds and elemental formula annotation supported by 13C isotope‐labeled Arabidopsis. As a proof of concept, we have compared the analysis by LC‐MS and GC‐FID of two previously characterized Arabidopsis thaliana knock‐out mutants for FAD6 and FAD7 desaturase genes. These results are discussed in light of lipidomic profiles obtained from the same samples. In addition, we performed untargeted LC‐MS analysis to determine the fatty acid content of two diatom species. Our results indicate that both LC‐MS and GC‐FID analyses are comparable, but that because of higher sensitivity and selectivity the LC‐MS‐based method allows for a broader coverage and determination of novel fatty acids.  相似文献   

15.
There is an increased emphasis on hyphenated techniques such as immunoaffinity LC/MS/MS (IA-LC/MS/MS) or IA-LC/MRM. These techniques offer competitive advantages with respect to sensitivity and selectivity over traditional LC/MS and are complementary to ligand binding assays (LBA) or ELISA's. However, these techniques are not entirely straightforward and there are several tips and tricks to routine sample analysis. We describe here our methods and procedures for how to perform online IA-LC/MS/MS including a detailed protocol for the preparation of antibody (Ab) enrichment columns. We have included sample trapping and Ab methods. Furthermore, we highlight tips, tricks, minimal and optimal approaches. This technology has been shown to be viable for several applications, species and fluids from small molecules to proteins and biomarkers to PK assays.  相似文献   

16.
Two-dimensional liquid chromatography (2D-LC) coupled on-line with electrospray ionization tandem mass spectrometry (2D-LC-ESI-MS/MS) is a new platform for analysis and identification of proteome. Peptides are separated by 2D-LC and then performed MS/MS analysis by tandem MS/MS. The MS/MS data are searched against database for protein identification. In one 2D-LC-ESI-MS/MS run, we obtained not only the structural information of peptides directly from MS/MS, but also the retention time of peptides eluted from LC. Information on the chromatographic behavior of peptides can assist protein identification in the new platform for proteomics. The retention time of the matching peptides of the identified protein was predicted by the hydrophobic contribute of each amino acid on reversed-phase liquid chromatography (RPLC). By using this strategy proteins were identified by four types of information: peptide mass fingerprinting (PMF), sequence query, and MS/MS ions searched and the predicted retention time. This additional information obtained from LC could assist protein identification with no extra experimental cost.  相似文献   

17.
As the study of protein biomarkers increases in importance, technical limitations to the detection of low-abundance proteins and high-throughput, high-precision quantitation remain to be overcome. The complexity and dynamic range of the plasma proteome makes the task of specific, quantitative detection even more challenging. Multiple reaction monitoring (MRM) capabilities of triple quadrupole MS systems have been explored as solutions to this challenge due to their well-known sensitivity and selectivity for components in complex matrices such as plasma. Recently, a suite of >100 MRMs representing ~50 plasma protein markers were monitored quantitatively in a single assay using the MRM-based technique showing detection of proteins down to the level of L-selectin (~1μg/mL) with minimal sample preparation and no peptide or protein standards for most of the plasma protein markers.1As more extensive candidate biomarker panels are being identified, MRM assays will need to be more rapidly developed to verify the expression changes of these proteins across larger clinical sample sets. To do this, the unique combination of triple-quadrupole and ion-trapping capabilities of the hybrid triple quadrupole–linear ion trap mass spectrometer have been utilized. A strategy for rapid MRM assay development for larger-scale profiling and qualification of biomarker candidates without having to first prepare synthetic peptide standards is currently being investigated and involves a chemical labeling strategy to create global reference standards to enable quantitative comparisons between clinical samples. Single assays consisting of ~500s of MRM transitions have been developed for this rapid qualification phase, facilitated by intelligent use of retention time windows during an LC analysis, while maintaining an optimum number of data points for improved precision of peak area and quantitative profiling. This presentation will demonstrate the details of this workflow with human plasma examples.  相似文献   

18.
A novel generic ultra performance liquid chromatography-tandem mass spectrometric (UPLC/MS/MS) method for the high throughput quantification of samples generated during permeability assessment (PAMPA) has been developed and validated. The novel UPLC/MS/MS methodology consists of two stages. Firstly, running a 1.5min isocratic method, compound-specific multiple reaction monitoring (MRM) methods were automatically prepared. In a second stage, samples were analyzed by a 1.5min generic gradient UPLC method on a BEH C18 column (50mmx2.1mm). Compounds were detected with a Waters Micromass Quattro Premier mass spectrometer operating in positive electrospray ionization using the compound-specific MRM methods. The linearity for the validation compounds (caffeine, propranolol, ampicillin, atenolol, griseofulvin and carbamazepine) typically ranges from 3.05nM to 12,500nM and the limits of detection for all generically developed methods are in the range between 0.61nM and 12nM in an aqueous buffer. The novel generic methodology was successfully introduced within early Drug Discovery and resulted in a four-fold increase of throughput as well as a significant increase in sensitivity compared to other in-house generic LC/MS methods.  相似文献   

19.
More than hundred pharmaceuticals, drugs of abuse or doping agents have been reported to be detectable in human hair. This article reviews the analysis of 90 drugs and drug metabolites by chromatographic procedures, including the pretreatment steps, the extraction methods, the reported limits of detection and the measured concentrations in real human hair samples. Some progress is observed in the detection of low dose drugs, like fentanyl or flunitrazepam. The general tendency in the last years, to highly sophisticated techniques (GC–MS–NCI, HPLC–MS, GC–MS–MS) illustrates well this constant fight for sensitivity. Some new findings, based on the recent experience of the authors, are also added.  相似文献   

20.
The origin, i.e. natural occurrence or illegal treatment, of findings of 17alpha-boldenone (alpha-Bol) and 17beta-boldenone (beta-Bol) in urine and faeces of cattle is under debate within the European Union. A liquid chromatographic positive ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of 17beta-boldenone, 17alpha-boldenone and an important metabolite/precursor androsta-1,4-diene-3,17-dione (ADD), using deuterium-labelled 17beta-boldenone (beta-Bol-d3) as internal standard. Detailed sample preparation procedures were developed for a variety of sample matrices such as bovine urine, faeces, feed and skin swab samples. The method was validated as a quantitative confirmatory method according to the latest EU guidelines and shows good precision, linearity and accuracy data, and CCalpha and CCbeta values of 0.1-0.3 and 0.4-1.0 ng/ml, respectively. Currently, the method has been successfully applied to suspect urine samples for more than a year, and occasionally to faeces, feed and swab samples as well. Results obtained from untreated and treated animals are given and their impact on the debate about the origin of residues of 17beta-boldenone is critically discussed. Finally, preliminary data about the degree of conjugation of boldenone residues are presented and a simple procedure for discrimination between residues from abuse versus natural origin is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号