共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Mammalian cells in culture were exposed to cyclic AMP, dibutyrul cyclic AMP, the phosphodiesterase inhibitor caffeine, or a combination of the last two, while junctional molecular transfer was probed with the series of microinjected, fluorescentlabelled linear molecules Glu, Glu-Glu, Glu-Glu-Glu, and Leu-Leu-Leu-Glu-Glu. The junctional permeability for these molecules increased with each of the agents, most markedly with the dibutyryl cyclic AMP-caffeine combination, as the intracellular cyclic nucleotide concentration rose. The junctional permeability effect developed over several hours. When probed with molecules close to the limit of cell-to-cell channel permeation (the most sensitive setting), the effect was detectable both, as an increase in the (relative) junctional transit rate and as an increase in the number of transferring cell interfaces in the test populations. The number of transferring cell interfaces reached a maximum by 4 hr, when the junctional transit rate, hence the junctional permeability, was still rising. Nonjunctional membrane permeability for the probe molecules, as determined by intracellular fluorescence loss, was not significantly changed (nor was there significant nonjunctional cell-to-cell transfer of molecules before or after the treatments). The rise in junctional permeability was associated with an increase in the number of gap junctional membrane particles, as determined by freeze-fracture electron microscopy: the average size of the particle clusters increased, and the frequency of the clusters increased, particularly that of the smaller (and presumably newer) clusters. This effect was blocked by treatments with the protein synthesis inhibitors cycloheximide or puromycin. These agents caused particle diminution (diminution of cluster frequency but not of average cluster size), with or without cyclic nucleotide. The junctional effects may represent a cyclic AMP-promoted proliferation of cell-to-cell channels. Some physiological implications, in particular, implications for hormone-regulated tissues, are discussed. 相似文献
2.
Summary Junctional molecular transfer (as indexed by the number of cell interfaces transferring fluorescent-labelled molecules) and concentration of endogenous cAMP were determined in mammalian cells in culture at varying serum concentration and cell density. In several cell types, on stepping the serum concentration from 10% (the concentration to which the cells had been adapted) to zero, the junctional transfer rose (reversibly) within 48 hr, as the endogenous cAMP concentration rose. The junctional transfer was inversely related to serum concentration over a range, most steeply so the transfer of large and charged molecules. one cell type showed no junctional change in response to serum; it showed also no endogenous cAMP change. Junctional transfer varied inversely with cell density over the range of 0.7–7 (104 cells/cm2) in 3T3 cells. In cultures seeded to various densities, or growing to various densities on their own, junctional transfer fell with rising density, and so did the endogenous cAMP concentration. Upon downstep from high density, junctional transfer rose over 24–48 hr. In B cells, junctional transfer was independent of cell density over the aforementioned range, and so was the endogenous cAMP concentration. These results, in conjunction with the effects of exogenous cAMP described in the preceding paper of this series, point to a cAMP-mediated junctional effect; a possible teleonomy for control of membrane junction is discussed. 相似文献
3.
Summary We have analyzed the intracellular and cell-to-cell diffusion kinetics of fluorescent tracers in theChironomus salivary gland. We use this analysis to investigate whether membrane potential-induced changes in junctional permeability are accompanied by changes in cell-to-cell channel selectivity. Tracers of different size and fluorescence wavelength were coinjected into a cell, and the fluorescence was monitored in this cell and an adjacent one. Rate constants,kj, for cell-to-cell diffusion were derived by compartment model analysis, taking into account (i) cell-to-cell diffusion of the tracers; (ii) their loss from the cells; (iii) their binding (sequestration) to cytoplasmic components; and (iv) their relative mobility to cytoplasm, as determined separately on isolated cells. In cell pairs, we compared a tracer'skj with the electrical cell-to-cell conductance,gj.At cell membrane resting potential, thekj's ranged 3.8–9.2×10–3 sec–1 for the small carboxyfluorescein (mol wt 376) to about 0.4×10–3 sec–1 for a large fluorescein-labeled sugar (mol wt 2327). Cell membrane depolarization reversibly reducedgj andkj for a large and a small tracer, all in the same proportion. This suggests that membrane potential controls the number of open channels, rather than their effective pore diameter or selectivity. From the inverse relation between tracer mean diameter and relativekj we calculate an effective, permeation-limiting diameter of approximately 29 Å for the insect cell-to-cell channel.Intracellular diffusion was faster than cell-to-cell diffusion, and it was not solely dependent on tracer size. Rate constants for intracellular sequestration and loss through nonjunctional membrane were large enough to become rate-limiting for cell-to-cell tracer diffusion at low junctional permeabilities. 相似文献
4.
Summary By cellular activation with hormones, we test the proposition (Loewenstein, W.R.,Physiol. Rev.
61:829, 1981) that the permeability of cell junction is upregulated through elevation of the level of cyclic AMP. Cultured rat glioma C-6 cells, with -adrenergic receptors, and human lung WI-38 cells, with prostaglandin receptors, were exposed to catecholamine (isoproterenol) and prostaglandin E1, respectively, while their junctions were probed with microinjected fluorescent-labelled mono-, di-, and triglutamate. Junctional permeability, as indexed by the proportion of cell interfaces transferring the probes, rose after the hormone treatments. The increase in permeability took several hours to develop and was associated with an increase in the number of gap-junctional membrane particles (freeze-fracture electron microscopy). Such interaction between hormonal and junctional intercellular communication may provide a mechanism for physiological regulation of junctional communication and (perhaps as part of that) for physiological coordination of responses of cells in organs and tissues to hormones. 相似文献
5.
The permeability of the cell-to-cell membrane channel and its regulation in mammalian cell junctions
Jean L. Flagg-Newton 《In vitro cellular & developmental biology. Plant》1980,16(12):1043-1048
Summary Mammalian cell-to-cell channels show polar permselective properties discriminating against negatively charged 14 ?-wide molecules
and are more restrictive than the channels of insect cell junctions. The channel permeability is modulated by conditions affecting
the concentration of intracellular ionic Ca: elevation of the external Ca load (B cells), treatment of cell cultures with
Ca-transporting ionophore (in the presence of external Ca, but not in its absence), treatment with a combination of cyanide
and iodoacetate, or with high levels of carbon dioxide, all cause depression of channel permeability. Treatment of cell cultures
with cyclic AMP or its more permeable derivative, dibutyryl cyclic AMP, produces increase in permeability. A similar channel
up regulation is observed upon elevation of the endogenous level of cyclic AMP by serum deprivation or lowering of cell density.
Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of
the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980.
This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International
Center.
This work was supported by grant number 5 R01 CA14464, awarded by the National Cancer Institute, DHEW. 相似文献
6.
Summary We studied the action of temperature-sensitive mutant simian virus 40—a transformation-inducing DNA virus—on the junctional permeability to mono-, di- and triglutamate in rat embryo-, pancreas islet (epithelia)-, and 10T1/2 cell cultures. Junctional permeability was reduced (reversibly) in the transformed state. To dissect the genetics of this alteration, we used two kinds of mutant virus DNA. One kind had a temperature-sensitive mutation on theA gene, rendering the largeT antigen (the gene product) thermolabile (T
+ T
–). The other had a deletion on theF gene, in addition, abolishing (permanently) the expression of the littlet antigen (t
–). The junctional alteration occurred in the conditionT
+
t
+, but not in the conditionsT
–
t
+,T
+
t
– orT
–
t
–. Both antigens, thus, are necessary for this junctional alteration—a genetic requirement identical to that for decontrol of growth (but distinct from that of the cytoskeletal alteration). 相似文献
7.
Elliot L. Hertzberg 《In vitro cellular & developmental biology. Plant》1980,16(12):1057-1067
Summary Studies on gap junctions isolated from rat liver by a procedure that avoids exogenous proteolysis (Hertzberg, E. L.; Gilula,
N. B.; J. Biol. Chem. 254: 2138–2147; 1979) are described. The original isolation procedure was modified to increase the yield
and has been extended to the preparation of gap junctions from mouse and bovine liver. Peptide map studies showed that the
27,000-dalton polypeptides present in liver gap junction preparations from all three sources are homologous and are not derived
from other polypeptides of higher molecular weight that are observed in cruder preparations. Similar studies with lens fiber
junctions demonstrated no homology between liver and lens junction polypeptides. Antibodies to the lens junction polypeptide
did not cross-react with the liver gap junction polypeptide, further supporting this conclusion.
Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of
the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980.
This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International
Center.
Research in the laboratory was supported by grants to Dr. Gilula from the National Institute of Health (HL 16507 and GM 24753). 相似文献
8.
Chellakere K. Manjunath Gwendolyn E. Goings Ernest Page 《The Journal of membrane biology》1985,85(2):159-168
Summary Gap junctions (GJ) isolated from rat hearts in presence of the protease inhibitor phenylmethylsulfonylfuoride (PMSF) contain a Mr 44,000 to 47.000 major polypeptide and have a urea-resistant layer of fuzz on their cytoplasmic surfaces, whereas junctions isolated without PMSF are proteolyzed to a Mr 29.500 polypeptide by a serine protease and have smooth cytoplasmic surfaces (C.K. Manjunath, G.E. Goings & E. PageAm. J. Physiol.
246:H865–H875, 1984). Rat liver GJ isolated with or without PMSF contain a Mr 28,000 polypeptide and have smooth cytoplasmic surfaces. Here we examine the origin, type and inhibitor sensitivity of the heart protease; why similar proteolysis is absent during isolation of rat liver gap junctions; and whether the Mr 44.000 to 47,000 cardiac GJ polypeptide is the precursor of the Mr 29,500 subunit. We show that the Mr 44,000 to 47,000 polypeptide corresponds to the unproteolyzed connexon subunit; that proteolysis of this polypeptide occurs predominantly during exposure to high ionic strength solution (0.6m KI) which releases serine protease from mast cell granules; that this protease is inhibitable with PMSF and (less completely) soybean trypsin inhibitor and chymostatin; and thatin vivo degranulation of mast cells by injecting rats with compound 48/80 fails to prevent breakdown of cardiac GJ during isolation. The results support the concept that GJ from rat heart and liver differ in protein composition. 相似文献
9.
Wang M Martínez AD Berthoud VM Seul KH Gemel J Valiunas V Kumari S Brink PR Beyer EC 《Biochemical and biophysical research communications》2005,333(4):1185-1193
Connexins (Cx) form gap junction channels mediating direct intercellular communication. To study the role of amino acids within the cytoplasmic loop, we produced a recombinant adenovirus containing Cx43 with a deletion of amino acids 130-136 (Cx43del(130-136)). Cx43del(130-136) expressed alone in HeLa cells localized within the cytoplasm and did not allow transfer of ions, neurobiotin or Lucifer yellow. When co-expressed with wild type Cx43, Cx43del(130-136) blocked electrical coupling and transfer of neurobiotin or Lucifer yellow. Cx43del(130-136) and Cx43 co-localized by immunofluorescence and were co-purified from Triton X-100-solubilized cell extracts. Intercellular transfer mediated by Cx37 and Cx45 (but not Cx26 or Cx40) was inhibited when co-expressed with Cx43del(130-136). Cx43del(130-136) co-localized with Cx37, Cx40, or Cx45, but not Cx26. These data suggest that Cx43del(130-136) produces connexin-specific inhibition of intercellular communication through formation of heteromeric connexons that are non-functional and/or retained in the cytoplasm. 相似文献
10.
A new reporter-based assay for the evaluation of gap junctional intercellular communication (GJIC) is presented. This assay was applied to the study of endogenous GJIC as well as to the evaluation of cell-to-cell communication exogenously induced in non-coupling cells by transfection with connexin 32. The results obtained with 18--glycyrrhetinic acid indicate that this assay system can be used to monitor the GJIC induced by transport of cAMP induced by activation of the dopamine 1 receptor cascade. 相似文献
11.
Summary Unproteolyzed gap junctions isolated from rat heart and liver were analyzed for the presence of inter-subunit disulfide bonds by sodium dodecylsulfate polyacrylamide gel electrophoresis. Rat cardiac junctions contained multiple disulfide bonds connecting theM
r 47,000 subunits of the same connexon and of different connexons. Inter-subunit disulfide bonds were absent in liver junctions. Unproteolyzed rat heart gap junctions were resistant to deoxycholate in their oxidized state, but dissolved readily in the detergent when the disulfide bonds were cleaved with -mercaptoethanol. Disulfide bonding in proteolyzed cardiac junctions was limited to pairs ofM
r 29,500 subunits. These junctions were not soluble in deoxycholate even in the presence of -mercaptoethanol. These results show that heart and liver junctions differ in their quarternary organization. 相似文献
12.
David T. Kiang Rahn Kollander H. Helen Lin Sigrid LaVilla Michael M. Atkinson 《In vitro cellular & developmental biology. Animal》1994,30(11):796-802
Summary Cell-to-cell communication via gap junctions has played a fundamental role in the orderly development of multicellular organisms.
Current methods for measuring this function apply mostly to homotypic cell populations. The newly introduced Fluorescence
Activated Cell Sorting (FACS) method, albeit with some limitations, is simple, reliable, and quantitative in measuring the
dye transfer via gap junctions in both homotypic and heterotypic cell populations. In the homotypic setting, the result in
dye transfer from the FACS method is comparable to the scrape-loading and microinjection methods. Using this FACS method,
we observed a decline of cell-to-cell communication in transformed and cancer cells. We also observed a differential degree
of communication between two heterotypic cell populations depending on the direction of dye transfer. 相似文献
13.
Summary The gap junction morphology was quantified in freeze-fracture replicas prepared from rat auricles that had been either quickly frozen at 6 K or chemically fixed by glutaraldehyde, in a state of normal cell-to-cell conduction or in a state of electrical uncoupling. The general appearance of the gap junctions was similar after both preparative procedures. A quantitative analysis of three gap junctional dimensions provided the following measurements in the quickly frozen conducting auricles (mean±sd): (a) P-face particles' diameter 8.27±0.74 nm (n =5709), (b) P-face particles' center-to-center distance 10.78±2.12 nm (n=4800), and (c) E-face pits' distance 9.99±2.19 nm (n=1600). Corresponding values obtained from chemically fixed tissues were decreased by about 3% for the particle's diameter and about 5% for the particles' and pits' distances. Electrical uncoupling by the action of either 1 mM 2–4-dinitrophenol (DNP), or 3.5 mMn-Heptan-1-ol (heptanol), induced a decrease of the particle's diameter, which amounted to –0.69±0.01 nm (mean ±se) in the quickly frozen preparations and –0.71±0.01 nm in the chemically fixed ones. The particles' distance was decreased by –0.96±0.04 nm in the quickly frozen samples and by –0.90 ±0.03 nm in the chemically fixed ones and the E-face pits' distance was similarly reduced. All differences were statistically significant (P<0.001 for all dimensions). Electrical recoupling after the heptanol effect promoted a return of these gap junctional dimensions towards normal values, which was about 50% complete within 20 min. It is concluded that very similar morphological alterations of the gap junctional structure are induced in the mammalian heart by different treatments promoting electrical uncoupling and that these conformational changes appear independently of the preparative procedure. The suggestion that the observed decrease of the particles' diameter is genuinely related to the closing mechanism of the unit cell-to-cell channel set in thei centers is thus confirmed. 相似文献
14.
本实验以离子电渗法将荧光黄注入细胞内,观察培养的EC 与SMC 同类及异类细胞间连接通讯现象,证实SMC 与EC 在培养中可形成同类或异类细胞GJ 结构,两种细胞间有接触介导的物质交流。EC-EC 之间的细胞通讯比SMC-SMC 和SMC-EC 之间为强。对SMC 有促增殖作用的LDL(100 μg LDL-蛋白质/ml)及胰岛素(15 mu/ml)对这种连接通讯有抑制作用,促癌剂TPA 几乎完全抑制此种连接通讯。结果提示高浓度LDL 及胰岛素等可能通过抑制SMC 与EC 之间的连接通讯而使SMC 脱离正常控制而大量增殖,促进AS发生、发展。故推论促进细胞连接通讯的因子,可能对AS 有防治作用,值得进一步研究。 相似文献
15.
Rogelio O. Arellano Fidel Ramón Amelia Rivera Guido A. Zampighi 《The Journal of membrane biology》1986,94(3):293-299
Summary The effect of pH was tested on the junction between crayfish lateral axons. By means of a glass capillary inserted into one of the axons, one side of the nunction was perfused with solutions of known pH while the junctional resistance,Rj, was monitored. Integrity of the gap junction was checked electron microscopically.Rj remained unchanged when the pH of the perfusate was lowered from 7.1 to 6.0. However, when the pH of the unperfused side of the junction was lowered by substituting acetate for chloride in the external solution,Rj rose, attesting to the integrity of the junction and its capacity to uncouple in the perfused state. We suggest that H+ does not affect the junctional channels directly, but acts through an intermediary which is inactivated or removed by the perfusion. 相似文献
16.
Intercellular communication of notochord cells during their differentiation was studied by microinjection of a fluorescent dye.Lucifer Yellow,Close correlation existed between the incidences of dye coupling and quantitative evaluation of gap junctions.high incidences of dye coupling and of gap junctions occurred at a stage when notochord cells were active in the change of cell shape and cell arrangement.With the subsidence of cell movements,both dye coupling and gap junctions were reduced to lower levels.It was,therefore,Suggested that intercellular communication via gap junctions played an important role in the coordination of notochord cell movements.Gap Junctions of altered configuration occurred in notochord cells in late taibud stage.The comparison of incidences of dye coupling at this stage with those at other stages strongly suggested that the gap junctions of altered configuration functioned just as those of generalized type. 相似文献
17.
ZengMibai JiangWansu 《Cell research》1990,1(1):67-75
Cell couplings before and after neural induction in embryos of Cynops orientalis were studied by means of single cell injection of Lucifer Yellow.Differences both in incidence and the extent of cell couplings were demonstrated.Results of cell couplings were correlated with electron microscopic observations of freeze-etching replicas. 相似文献
18.
Ronny Fransson Pierluigi Nicotera Lars Wärng»ardi Ulf G. Ahlborg 《Cell biology and toxicology》1990,6(2):235-244
Recent studies have demonstrated that the insecticide DDT is a tumor promoting agent. Similar to many other tumor promoting agents, DDT has been shown to inhibit gap junctional intercellular communication (GJIC) between cells in culture, and it has been suggested that DDT-induced loss of communication between adjacent cells may depend on changes in cytosolic free Ca2+ concentration ([Ca2+]i). In the present study, the role of[Ca2+]i in DDT-induced loss of GJIC was investigated in WB-F344 rat liver cells using the scrape-loading/dye transfer assay (SLDT) and the Ca2+ fourescent indicator, furà-2. Our results show that DDT at non-cytotoxic concentrations caused a reversible loss of GJIC. Inhibition of GJIC was not associated with detectable increases in [Ca2+]i, and was not prevented by loading cells with the intracellular Ca2+ chelator, BAPTA. In addition, the hydroquinone, tBuBHQ, which caused a 2+3 fold sustained increase in [Ca2+]i, did not inhibit GJIC. Conversely, when untreated cells were loaded with increasing BAPTA concentrations, GJIC were lost. These results indicate that increases in [Ca2+]i are not responsible for DDT-induced loss of communication and that, in general an increase in [Ca2+]i, within physiological levels is not sufficient to abolish GJIC. However, Ca2+-dependent processes that are active at normal resting [Ca2+
i appear to be required for the maintenance of GJIC.Abbreviations [Ca2+]
cytosolic free Ca2+ concentration
- GJIC
gap junctional intercellular communication
- SLDT
scrape-loading/dye transfer assay
- DDT
1,1,1-trichloro-2,2-di-(4-chlorophenyl)ethane
- tBuBHQ
2,5-di(tert-butyl)-1,4-benzohydroquinone
- LDH
lactate dehydrogenase
- ER
endoplasmic reticulum
- Fura-2
1-[2-(5carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxyl]-2-(2amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid
- BAPTA
bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraaceticacid
- Fura-2/AM and BAPTA/AM
are the cell permeant acetoxymethyl ester forms of fura-2 and BAPTA, respectively 相似文献
19.
The role of junctional communication in animal tissues 总被引:2,自引:0,他引:2
John D. Pitts 《In vitro cellular & developmental biology. Plant》1980,16(12):1049-1056
Summary Permeable intercellular junctions are a common feature of most animal tissues. These junctions allow the free exchange of
small ions and molecules between all the cells in coupled populations. Such limited syncytial interaction contributes to the
integration of individual cells into organized tissues.
Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of
the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980.
This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International
Center. 相似文献
20.
Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth 总被引:13,自引:0,他引:13
Parmender P. Mehta Agnes Hotz-Wagenblatt Birgit Rose David Shalloway Warner R. Loewenstein 《The Journal of membrane biology》1991,124(3):207-225
Summary Incorporation of the gene for connexin 43, a cell-cell channel protein of gap junction, into the genome of communication-deficient transformed mouse 10T1/2 cells restored junctional communication and inhibited growth. Growth was slowed, saturation density reduced and focus formation suppressed, and these effects were contingent on overexpression of the exogenous gene and the consequent enhancement of communication. In coculture with normal cells the growth of the connexin overexpressors was completely arrested, as these cells established strong communication with the normal ones. Thus, in culture by themselves or in coculture, the connexin overexpressor cells grew like normal cells. These results demonstrate that the cell-cell channel is instrumental in growth control; they are the expected behavior if the channel transmits cytoplasmic growth-regulatory signals. 相似文献