首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary Mammalian cells in culture were exposed to cyclic AMP, dibutyrul cyclic AMP, the phosphodiesterase inhibitor caffeine, or a combination of the last two, while junctional molecular transfer was probed with the series of microinjected, fluorescentlabelled linear molecules Glu, Glu-Glu, Glu-Glu-Glu, and Leu-Leu-Leu-Glu-Glu. The junctional permeability for these molecules increased with each of the agents, most markedly with the dibutyryl cyclic AMP-caffeine combination, as the intracellular cyclic nucleotide concentration rose. The junctional permeability effect developed over several hours. When probed with molecules close to the limit of cell-to-cell channel permeation (the most sensitive setting), the effect was detectable both, as an increase in the (relative) junctional transit rate and as an increase in the number of transferring cell interfaces in the test populations. The number of transferring cell interfaces reached a maximum by 4 hr, when the junctional transit rate, hence the junctional permeability, was still rising. Nonjunctional membrane permeability for the probe molecules, as determined by intracellular fluorescence loss, was not significantly changed (nor was there significant nonjunctional cell-to-cell transfer of molecules before or after the treatments). The rise in junctional permeability was associated with an increase in the number of gap junctional membrane particles, as determined by freeze-fracture electron microscopy: the average size of the particle clusters increased, and the frequency of the clusters increased, particularly that of the smaller (and presumably newer) clusters. This effect was blocked by treatments with the protein synthesis inhibitors cycloheximide or puromycin. These agents caused particle diminution (diminution of cluster frequency but not of average cluster size), with or without cyclic nucleotide. The junctional effects may represent a cyclic AMP-promoted proliferation of cell-to-cell channels. Some physiological implications, in particular, implications for hormone-regulated tissues, are discussed.  相似文献   

2.
Summary Junctional molecular transfer (as indexed by the number of cell interfaces transferring fluorescent-labelled molecules) and concentration of endogenous cAMP were determined in mammalian cells in culture at varying serum concentration and cell density. In several cell types, on stepping the serum concentration from 10% (the concentration to which the cells had been adapted) to zero, the junctional transfer rose (reversibly) within 48 hr, as the endogenous cAMP concentration rose. The junctional transfer was inversely related to serum concentration over a range, most steeply so the transfer of large and charged molecules. one cell type showed no junctional change in response to serum; it showed also no endogenous cAMP change. Junctional transfer varied inversely with cell density over the range of 0.7–7 (104 cells/cm2) in 3T3 cells. In cultures seeded to various densities, or growing to various densities on their own, junctional transfer fell with rising density, and so did the endogenous cAMP concentration. Upon downstep from high density, junctional transfer rose over 24–48 hr. In B cells, junctional transfer was independent of cell density over the aforementioned range, and so was the endogenous cAMP concentration. These results, in conjunction with the effects of exogenous cAMP described in the preceding paper of this series, point to a cAMP-mediated junctional effect; a possible teleonomy for control of membrane junction is discussed.  相似文献   

3.
Summary By cellular activation with hormones, we test the proposition (Loewenstein, W.R.,Physiol. Rev. 61:829, 1981) that the permeability of cell junction is upregulated through elevation of the level of cyclic AMP. Cultured rat glioma C-6 cells, with -adrenergic receptors, and human lung WI-38 cells, with prostaglandin receptors, were exposed to catecholamine (isoproterenol) and prostaglandin E1, respectively, while their junctions were probed with microinjected fluorescent-labelled mono-, di-, and triglutamate. Junctional permeability, as indexed by the proportion of cell interfaces transferring the probes, rose after the hormone treatments. The increase in permeability took several hours to develop and was associated with an increase in the number of gap-junctional membrane particles (freeze-fracture electron microscopy). Such interaction between hormonal and junctional intercellular communication may provide a mechanism for physiological regulation of junctional communication and (perhaps as part of that) for physiological coordination of responses of cells in organs and tissues to hormones.  相似文献   

4.
Summary We have analyzed the intracellular and cell-to-cell diffusion kinetics of fluorescent tracers in theChironomus salivary gland. We use this analysis to investigate whether membrane potential-induced changes in junctional permeability are accompanied by changes in cell-to-cell channel selectivity. Tracers of different size and fluorescence wavelength were coinjected into a cell, and the fluorescence was monitored in this cell and an adjacent one. Rate constants,k j , for cell-to-cell diffusion were derived by compartment model analysis, taking into account (i) cell-to-cell diffusion of the tracers; (ii) their loss from the cells; (iii) their binding (sequestration) to cytoplasmic components; and (iv) their relative mobility to cytoplasm, as determined separately on isolated cells. In cell pairs, we compared a tracer'sk j with the electrical cell-to-cell conductance,g j .At cell membrane resting potential, thek j 's ranged 3.8–9.2×10–3 sec–1 for the small carboxyfluorescein (mol wt 376) to about 0.4×10–3 sec–1 for a large fluorescein-labeled sugar (mol wt 2327). Cell membrane depolarization reversibly reducedg j andk j for a large and a small tracer, all in the same proportion. This suggests that membrane potential controls the number of open channels, rather than their effective pore diameter or selectivity. From the inverse relation between tracer mean diameter and relativek j we calculate an effective, permeation-limiting diameter of approximately 29 Å for the insect cell-to-cell channel. Intracellular diffusion was faster than cell-to-cell diffusion, and it was not solely dependent on tracer size. Rate constants for intracellular sequestration and loss through nonjunctional membrane were large enough to become rate-limiting for cell-to-cell tracer diffusion at low junctional permeabilities.  相似文献   

5.
Summary Mammalian cell-to-cell channels show polar permselective properties discriminating against negatively charged 14 ?-wide molecules and are more restrictive than the channels of insect cell junctions. The channel permeability is modulated by conditions affecting the concentration of intracellular ionic Ca: elevation of the external Ca load (B cells), treatment of cell cultures with Ca-transporting ionophore (in the presence of external Ca, but not in its absence), treatment with a combination of cyanide and iodoacetate, or with high levels of carbon dioxide, all cause depression of channel permeability. Treatment of cell cultures with cyclic AMP or its more permeable derivative, dibutyryl cyclic AMP, produces increase in permeability. A similar channel up regulation is observed upon elevation of the endogenous level of cyclic AMP by serum deprivation or lowering of cell density. Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980. This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center. This work was supported by grant number 5 R01 CA14464, awarded by the National Cancer Institute, DHEW.  相似文献   

6.
Summary We studied the action of temperature-sensitive mutant simian virus 40—a transformation-inducing DNA virus—on the junctional permeability to mono-, di- and triglutamate in rat embryo-, pancreas islet (epithelia)-, and 10T1/2 cell cultures. Junctional permeability was reduced (reversibly) in the transformed state. To dissect the genetics of this alteration, we used two kinds of mutant virus DNA. One kind had a temperature-sensitive mutation on theA gene, rendering the largeT antigen (the gene product) thermolabile (T + T ). The other had a deletion on theF gene, in addition, abolishing (permanently) the expression of the littlet antigen (t ). The junctional alteration occurred in the conditionT + t +, but not in the conditionsT t +,T + t orT t . Both antigens, thus, are necessary for this junctional alteration—a genetic requirement identical to that for decontrol of growth (but distinct from that of the cytoskeletal alteration).  相似文献   

7.
Summary To learn whether the reduction of cell-to-cell communication in transformation is a possible primary effect of pp60src phosphorylation or secondary to a cytoskeletal alteration, we examined the junctional permeability in transformed cells with normal cytoskeleton. The permeability to fluorescentlabelled mono- and diglutamate was compared in clones of Faras' vole cells—clones transformed by Rous sarcoma virus and reverted from that transformation. One revertant clone (partial revertant), had the high levels of pp60src kinase activity and tumorigenicity of the fully transformed parent clone, but had lost the cytoskeletal alterations of that clone. Another revertant clone (full revertant) had lost the tumorigenicity and most of the pp60src kinase activity, in addition (J.F. Nawrocki et al., 1984,Mol. Cell Biol. 4:212). The junctional permeability of thepartial revertant with normal cytoskeleton was similar to that of the fully transformed parent clone with abnormal cytoskeleton. The permeabilities of both were lower than those of thefull revertant and the normal uninfected cell, demonstrating that the junctional change by thesrc gene is independent of the cytoskeletal one.  相似文献   

8.
Modulation of the intracellular concentration of cyclic AMP has been associated with a regulatory role in cell division, cell morphology, and physical properties of the plasma membrane. Untransformed rat kidney cells in culture exhibit epitheloid morphology, high intracellular cyclic AMP levels, and contact inhibition of growth. Untransformed rat kidney cells transformed with the Kirsten murine sarcoma virus exhibit a low cyclic AMP content, rapid growth rate, and a loss of contact inhibition. Scanning electron microscopy reveals a distinctive difference in the surface structure of the two cell types during G1 of the cell cycle. The surface of the transformed cell is covered with microvilli while its untransformed counterpart is devoid of microvilli. The presence of microvilli can be controlled as a function of temperature by two temperature-sensitive mutants of the Kirsten sarcoma virus (ts6t6 and ts371 cl 5). In the ts6t6 mutant, growth at 32°C results in a low cyclic AMP content and the presence of microvilli, while growth at 39°C results in a high cyclic AMP content and a decrease in microvilli. The oposite effect is seen with the ts371 cl 5 mutant. Correlation of cyclic AMP content with the presence of microvilli suggests that this surface phenomenon is a function of cyclic AMP concentration.  相似文献   

9.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

10.
Summary Cells of organs and tissues commonly communicate directly with one another via permeable membrane junctions. Cell-to-cell channels, spanning the width of both membranes of a junction, are thought to provide the pathways between the cytoplasms of adjacent cells for the immediate exchange of ions and small molecules. We study these cell-to-cell channels in a cell model system, the salivary gland ofChironomus. Using intracellularly injected fluorescent labelled peptides and oligosaccharides of various molecular dimensions as channel permeability probes we find the channels to have a bore of about 2 nm. The channel permeability can be modulated and, in the extreme, the channels can be closed under various experimental conditions. With the aid of the Ca2+-sensitive photoprotein aequorin as monitor of cytoplasmic free Ca2+ concentration, we show that a determining factor in this modulation of channel permeability is the cytoplasmic free Ca2+ concentration. Moreover, results obtained by injection of different-sized and different-labelled channel permeability probes together with Ca2+ indicate that closure of the individual channels may occur in more than one step, i.e., by a graded reduction of channel bore. Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980. This symposium was supported, in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center. This work was supported by NH Grants 5P1GM23911-07 and 5T32-6M07403-04.  相似文献   

11.
Summary To study changes of junctional membrane permeability associated with transformation, the junctions and the nonjunctional membranes of quail embryo-, chick embryo- and mouse-3T3 cell cultures, infected with temperature-sensitive mutant Rous sarcoma virus, were probed with fluorescent-labelled glutamate. Junctional permeability fell in the transformed state. In the quail cells, the fall was detectable within 25 min of shifting the temperature down to the level (permissive) at which tyrosine-phosphorylation by the viralsrc gene product is expressed. This reduction of junctional permeability is one of the earliest manifestations of viral transformation. Normal permeability was restored within 30 min of raising the temperature to the nonpermissive level, a reversibility that could be displayed several times during the span of a cell generation. The reversal seems to reflect a reopening of cell-to-cell channels rather than a synthesis of new ones; it is not blocked by protein-synthesis inhibition. Treatments with cyclic AMP and phosphodiesterase inhibitor or with forskolin, which stimulate serine and threonine phosphorylation—the type of phosphorylation on which normal junctional permeability depends (Wiener & Loewenstein, 1983,Nature 305433)—did not abolish, in general, the junctional effect of the virus;src tyrosine-phosphorylation apparently overrides the junctional upregulation mediated by cyclic AMP. Nonjunctional membrane permeability was not sensibly affected by the virus. It was affected, however, by temperature: lowering the temperature from the nonpermissive to the permissive level caused the nonjunctional permeability to fall, andvice versa. This change was unrelated to transformation. Its secondary effect on junctional transfer is in the opposite direction to that produced by the temperature-activated viral transformation.  相似文献   

12.
The rapid effects of cAMP on gap junction-mediated intercellular communication were examined in several cell types which express different levels of the gap junction protein, connexin43 (Cx43), including immortalized rat hepatocyte and granulosa cells, bovine coronary venular endothelial cells, primary rat myometrial and equine uterine epithelial cells. Functional analysis of changes in junctional communication induced by 8-bromo-cAMP was monitored by a fluorescence recovery after photobleaching assay in subconfluent cultures in the presence or absence of 1.0 mm 1-octanol (an agent which uncouples cells by closing gap junction channels). Communicating cells treated with 1.0 mm 8-bromo-cAMP alone exhibited significant increases in the percent of fluorescence recovery which were detected within 1–3 min depending on cell type, and junctional communication remained significantly elevated for up to 24 hr. Addition of 1.0 mm 8-bromo-cAMP to cultured cells, which were uncoupled with 1.0 mm octanol for 1 min, exhibited partial restoration of gap junctional permeability beginning within 3–5 min. Identical treatments were performed on cultures that were subsequently processed for indirect immunofluorescence to monitor Cx43 distribution. The changes in junctional permeability of cells correlated with changes in the distribution of immunoreactive Cx43. Cells treated for 2 hr with 10 m monensin exhibited a reduced communication rate which was accompanied by increased vesicular cytoplasmic Cx43 staining and reduced punctate surface staining of junctional plaques. Addition of 1.0 mm 8-bromo-cAMP to these cultures had no effect on the rate of communication or the distribution of Cx43 compared to cultures treated with monensin alone. These data suggest that an effect of cyclic AMP on Cx43 gap junctions is to promote increases in gap junctional permeability by increasing trafficking and/or assembly of Cx43 to plasma membrane gap junctional plaques.We acknowledge the technical assistance of Richard Lewis and Meghan Abella. We thank Dr. Hugh Dookwah for contributions to the myometrial cell isolation protocol and Drs. Stephen H. Safe, Timothy D. Phillips, and Evelyn Tiffany-Castiglioni for helpful discussions. This work was funded by NIH (HD-26182, P42-ES04917, ES05871-01A1), the March of Dimes Birth Defects Foundation Basic Research grant #1-0796, and USDA 92-37203-7952.  相似文献   

13.
Additive effects against tumor cells might be achieved by combining anti-neoplastic agents directed against one or more altered mechanisms in cancer. We investigated the participation of gap junctional intercellular communication (GJIC), which is commonly dysfunctional in tumor cells as a possible mediating mechanism of the effect of all-trans-retinoic acid (RA) and tamoxifen (Tx) in MCF-7 human breast cancer cell lines. The combination of RA + Tx stimulated GJIC in approximately 53 +/- 3% of MCF-7 cells as early as after 6 h of treatment remaining communicated through 144 h of culture. The GJIC enhancement occurred along with immunolocalization of Cx26 and 43 at the membrane of contacting cells and correlated with higher protein levels. Cx40 immunoreactive plaques were detected at cell-to-cell contacts during 48 h of RA + Tx treatment that did not involve higher protein expression, to the contrary, a downregulation occurred after 72 h of treatment. Cell proliferation inhibition upon RA + Tx exposure was observed with optimal effects at 96-120 h of culture with an accumulation of cells primarily in G2/M and G0/G1 cell cycle boundaries. An enhancement of the pre-existing E-cadherin levels was observed after drug exposure along with a downregulation of Bcl-2 and C-myc protein levels and a reduction of telomerase activity, suggesting partial tumor phenotype reversion. Blockage of the RA + Tx-induced GJIC with 18-beta-glycyrrhetinic acid (beta-Gly) prevented in 34% the inhibition of MCF-7 proliferation and the E-cadherin increment in 30% at 96 h of culture. GJIC blockage did not alter the downregulation of Bcl-2, c-Myc, or telomerase activity induced by RA + Tx. Our results showed the participation of GJIC as a mediator mechanism of the combined action of RA and Tx in MCF-7 cells. The chemopreventive modulation of GJIC might represent an approachable alternative for the improvement of cancer therapy.  相似文献   

14.
Summary Lens fibers are coupled by communicating junctions which contain a 28-kDalton protein (MIP26) believed to be the main component of the cell-to-cell channel. To study the permeability properties and regulation of these channels, anin vitro system has been developed in which MIP26 isolated from calf lens is incorporated into liposomes and the resulting channels are studied spectrophotometrically by a swelling assay. Liposome vesicles were prepared using a sonication/resuspension method. Incorporation efficiency was monitored by freeze-fracture. Vesicles were resuspended in 6% Dextran T-10. Assay buffer was identical, except for isotonic substitution of sucrose for T-10. MIP26-incorporated (but not control) vesicles swell under isotonic conditions indicating sucrose entry (via channels) followed by water to maintain osmotic balance. In the absence of calmodulin, calcium ion has no effect on channel permeability. On the contrary, vesicles prepared with equimolar amounts of MIP26 and CaM do not swell in the presence of calcium ion, indicating that the channels can be closed. Addition of EGTA to these vesicles reinitiates swelling—evidence that the channel gating mechanism is reversible. Magnesium ion has no effect on either type of vesicle.  相似文献   

15.
Many ascidian oocytes undergo 'spontaneous' germinal vesicle breakdown (GVBD) when transferred from the ovary to normal pH 8.2 sea water (SW); however, low pH inhibits GVBD, which can then be stimulated while remaining in the low pH SW. Oocytes of Boltenia villosa blocked from GVBD by pH 4 SW undergo GVBD in response to permeant cyclic AMP (8-bromo-cyclic AMP), phosphodiesterase inhibitors (isobutylmethylxanthine and theophylline) or the adenylyl cyclase activator forskolin. This suggests that cAMP increases during GVBD. Removal of the follicle cells or addition of a protease inhibitor inhibits GVBD in response to raised pH but not to forskolin, theophylline or 8 bromo-cAMP. Isolated follicle cells in low pH SW release protease activity in response to an increase in pH. These studies imply that the follicle cells release protease activity, which either itself stimulates an increase in oocyte cAMP level or reacts with other molecules to stimulate this process. Studies with the mitogen-activated protein (MAP) kinase inhibitors U0126 and CI 1040 suggest that MAP kinase is not involved in GVBD. The Cdc25 inhibitor NSC 95397 inhibits GVBD at 200 n m in a reversible manner.  相似文献   

16.
Summary The ionic permeability of the basolateral membrane ofNecturus gallbladder epithelium was studied with intracellular microelectrode techniques. After removal of most of the subepithelial tissue (to reduce unstirred layer thickness), impalements were performed from the serosal side, and ionic substitutions were made in the serosal solution while a microelectrode was kept in a cell. Thus, it was possible to obtain continuous (and reversible) records of transepithelial and cell membrane potentials and to measure intermittently the transepithelial resistance and the ratio of cell membrane resistances. From these data and the mean value of the equivalent resistance of the cell membranes in parallel (obtained from cable analysis in a different group of tissues), absolute cell membrane and shunt resistances and equivalent electromotive forces (emf's) were calculated. From the changes of basolateral membrane emf (E b ) produced by the substitutions, the conductance (G) and permeability (P) of the membrane for K, Cl and Na were estimated. Potassium-for-sodium substitutions produced large reductions of both cell membrane potentials, ofE b , and of the resistance of the basolateral membrane (R b ), indicating highG K andP K . Chloride substitution with isethionate or sulfate resulted in smaller changes of cell membrane potentials andE b and in no significant change ofR b , indicating small but measurable values ofG Cl andP Cl . Sodium substitutions with N-methyl-d-glucamine (NMDG) resulted in cell potential changes entirely attributable to the biionic potential produced in the shunt pathway (P Na >P NMDG ), and in no significant changes ofP b orE b , indicating thatG Na andP Na are undetectable. The question of the mechanism of Cl transport across the basolateral membrane was addressed by comparing the mean rate of transepithelial Cl transport (J Cl net ) and the predicted passive Cl flux across the basolateral membrane (from the membrane Cl conductance, potential, and Cl equilibrium potential). The conclusion is that only a very small fraction of the Cl flux across the basolateral membrane can be electrodiffusional. Since the paracellular Cl conductance is also too low to account forJ Cl net , these results suggest the presence of a neutral mechanism of Cl extrusion from the cells. This could be a NaCl pump, a downhill KCl transport mechanism, or a Cl–HCO3 exchange mechanism.  相似文献   

17.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

18.
(1) The plasma membrane potential of hepatocytes was calculated from the distribution of 36Cl?. The potential observed under several conditions was equivalent to that previously measured using microelectrodes in perfused liver. (2) Dibutyryl cAMP increased the membrane potential. Replacement of bicarbonate ions by morpholinosulphonate decreased the potential and reduced the effect of cAMP. (3) The effect of both bicarbonate and cAMP was abolished by ouabain. (4) Both bicarbonate and cAMP stimulated the activity of the (Na+ + K+)-ATPase as measured by ouabain-inhibitable 86Rb+ uptake. (5) It is suggested that the stimulation of alanine transport by these effectors is mediated by an increase in cell membrane potential via stimulation of the (Na+ + K+)-ATPase  相似文献   

19.
20.
Parathyroid hormone (PTH) alters the shape of osteoblastic cells both in vivo and in vitro. In this study, we examined the effect of PTH on cytoskeletal actin and myosin, estimated by polyacrylamide gel electrophoresis of Triton X-100 (1%) nonextractable proteins. After 2-5 minutes, PTH caused a rapid and transient decrease of 50-60% in polymerized actin and myosin associated with the Triton X-100 nonextractable cytoskeleton. Polymerized actin returned to control levels by 30 min. The PTH effect was dose-dependent with an IC50 of about 1 nM, and was partially inhibited by the (3-34) PTH antagonist. PTH caused a rapid transient rise in cyclic AMP (cAMP) in these cells that peaked at 4 min, while the nadir in cytoskeletal actin and myosin was recorded around 5 min. The intracellular calcium chelator Quin-2/AM (10 microM) also decreased cytoskeletal actin and myosin, to the same extent as did PTH (100 nM). To distinguish between cAMP elevation and Ca++ reduction as mediators of PTH action, we measured the phosphorylation of the 20 kD (PI 4.9) myosin light chain in cells preincubated with [32P]-orthophosphate. The phosphorylation of this protein decreased within 2-3 min after PTH addition and returned to control levels after 5 min. The calcium ionophore A-23187 did not antagonize this PTH effect. Visualization of microfilaments with rhodamine-conjugated phalloidin showed that PTH altered the cytoskeleton by decreasing the number of stress fibers. These changes in the cytoskeleton paralleled changes in the shape of the cells from a spread configuration to a stellate form with retracting processes. The above findings indicate that the alteration in osteoblast shape produced by PTH involve relatively rapid and transient changes in cytoskeletal organization that appear to be mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号