首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have studied the hematopoietic process which is induced by dimethyl sulfoxide (Me2SO) in the Ostertag FSD-1 line of Friend erythroleukemia (FL) cells and have observed several changes that precede the onset of hemoglobin synthesis at 48 hr. Although cellular viability, mitotic rate, and deoxyribonucleic acid content are unaffected by our induction procedure, the induced cells become progressively smaller, and by 96 hr contain only 55% as much ribonucleic acid and 60–70% as much protein as control cells. The decline in ribonucleic acid content is significant by 24 hr and affects 4S and ribosomal ribonucleic acids in a noncoordinated manner throughout the hematopoietic process. Furthermore, incorporation of radioactive uridine into the 45S precursor of ribosomal ribonucleic acid is specifically inhibited by 1–2 hr after first treating FL cultures with 1% Me2SO. This earliest known effect of Me2SO on FL cells is followed by a decline in synthesis of protein. The basic sequence of macromolecular and cell size changes are similar to those that occur during normal erythropoiesis.  相似文献   

2.
Asparaginase was found in the soluble fraction of cells of Azotobacter vinelandii, and its activity remained the same during growth of the organism in a nitrogen-free medium. The specific activity and the yield of A. vinelandii increased twofold in the presence of ammonium sulfate. Within limits, the temperature (30 to 37°C) and pH (6.5 to 8.0) of the medium showed little effect on the levels of enzyme activity. The enzyme was purified to near homogeneity by standard methods of enzyme purification, including affinity chromatography, and had optimum activity at pH 8.6 and 48°C. The approximate molecular weight was 84,000. The apparent Km value for the substrate was 1.1 × 10-4 M. Metal ions or sulfhydryl reagents were not required for enzyme activity. Cu2+, Zn2+, and Hg2+ showed concentration-dependent inhibition, whereas amino and keto acids had no effect on the enzyme activity. Asparaginase was stable when incubated with rat serum and ascites fluid. The enzyme had no effect on the membrane of sheep erythrocytes and did not inhibit the incorporation of radioactive precursors into deoxyribonucleic acid, ribonucleic acid, and protein in Yoshida ascites sarcoma cells. Asparaginase activity was not detected in the tumor cells.  相似文献   

3.
A "nuclear fraction" prepared from Bacillus subtilis was a more efficient template than purified deoxyribonucleic acid for the synthesis of ribonucleic acid by exogenously added ribonucleic acid polymerase isolated from B. subtilis. The initial rate of synthesis with the nuclear fraction was higher and synthesis continued for several hours, yielding an amount of ribonucleic acid greater than the amount of deoxyribonucleic acid used as the template. The product was heterogenous in size, with a large portion exceeding 23S. When purified deoxyribonucleic acid was the template, a more limited synthesis was observed with a predominantly 7S product. However, the ribonucleic acids produced in vitro from these templates were very similar to each other and to in vivo synthesized ribonucleic acid as determined by the competition of ribonucleic acid from whole cells in the annealing of in vitro synthesized ribonucleic acids to deoxyribonucleic acid. Treatment of the nuclear fraction with heat (60 C for 15 min) or trypsin reduced the capacity of the nuclear fraction to synthesize ribonucleic acid to the level observed with purified deoxyribonucleic acid.  相似文献   

4.
A plasmid-encoded enzyme reported by us to phosphorylate amikacin in a laboratory strain of Escherichia coli has been localized in the bacterial cell. More than 88% of this amikacin phosphotransferase (APH) activity was retained in spheroplasts formed by ethylenediaminetetraacetate-lysozyme treatment of an APH-containing E. coli transconguant known to form spheroplasts readily. By comparison, the spheroplasts retained 94% of deoxyribonucleic acid polymerase I and 98% of glutamyl-transfer ribonucleic acid synthetase, two internal markers, whereas less than 10% of the activity of a periplasmic marker, acid phosphatase, was present in spheroplasts. Treatment of whole cells of the transconjugant with chemical probes incapable of crossing the plasma membrane obliterated acid phosphatase activity, whereas the internal markers deoxyribonucleic acid polymerase I, glutamyl-transfer ribonucleic acid synthetase, and β-galactosidase were virtually unaffected after treatment for 5 min; more than 60% of the APH activity remained. As a control, similar chemical treatment of sonic extracts, in which enzymes were not protected by bacterial compartmentalization, produced more extensive reduction in the activities of all test enzymes, including APH. Spheroplasts preincubated with adenosine triphosphatase were shown by thin-layer chromatography to phosphorylate amikacin. Spheroplasts of cells grown in the presence of H332PO4 were shown to utilize internally generated adenosine 5′-triphosphate in the phosphorylation of amikacin. The absence of 32P-phosphorylated amikacin after incubation of [γ-32P]adenosine 5′-triphosphate with spheroplasts confirmed that exogenous adenosine 5′-triphosphate was not used in the reaction. These results suggest an internal location for APH. This conclusion has implications for the role of such enzymes in aminoglycoside resistance of gram-negative bacteria.  相似文献   

5.
We have developed methods for separating the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. The total membrane fraction from ethylenediaminetetraacetic acid-lysozyme-treated cells was resolved into three major fractions by isopycnic density centrifugation. Between 85 and 90% of the succinate dehydrogenase and cyanide-sensitive reduced nicotinamide adenine dinucleotide oxidase activity was found in the first (I) fraction (rho = 1.221 g/ml) and 80% of the membrane-associated 2-keto-3-deoxyoctonate was found in the third (III) fraction (rho = 1.166 g/ml). The middle (II) fraction (rho = 1.185 g/ml) appeared to be a hybrid membrane fraction and contained roughly 10 to 20% of the activity of the enzyme markers and 2-keto-3-deoxyoctonate. No significant amounts of deoxyribonucleic acid or ribonucleic acid were present in the three isolated fractions, although 26% of the total cellular deoxyribonucleic acid and 3% of the total ribonucleic acid were recovered with the total membrane fraction. Phosphatidylethanolamine made up the bulk (60 to 70%) of the phospholipids in the membrane fractions. However, virtually all of the phosphatidylserine and cardiolipin were found in fraction I. Fraction III appeared to contain elevated amounts of lysophospholipids and contained almost three times the amount of total phospholipid as compared with fraction I. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved approximately 40 polypeptides in the total membrane fraction. Two-thirds of these polypeptides were enriched in fraction I, and the remainder was enriched in fraction III. Fraction II contained a banding pattern similar to the total membrane fraction. Electron microscopy revealed that vegetative cells of M. xanthus possessed an envelope similar to that of other gram-negative bacteria; however, the vesicular appearance of the isolated membranes was somewhat different from those reported for Escherichia coli and Salmonella typhimurium. The atypically low bouyant density of the outer membrane of M. xanthus is discussed with regard to the high phospholipid content of the outer membrane.  相似文献   

6.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

7.
Inositol polyphosphatases (IPPases), particularly those that can hydrolyze myo-inositol hexakisphosphate (Ins P6), are of biotechnological interest for their ability to reduce the metabolically unavailable organic phosphate content of feedstuffs and to produce lower inositol polyphosphates (IPPs) for research and pharmaceutical applications. Here, the gene coding for a new protein tyrosine phosphatase (PTP)-like IPPase was cloned from Megasphaera elsdenii (phyAme), and the biochemical properties of the recombinant protein were determined. The deduced amino acid sequence of PhyAme is similar to known PTP-like IPPases (29–44% identity), and the recombinant enzyme displayed strict specificity for IPP substrates. Optimal IPPase activity was displayed at an ionic strength of 250 mM, a pH of 5.0, and a temperature of 60°C. In order to elucidate its stereospecificity of Ins P6 dephosphorylation, a combination of high-performance ion-pair chromatography and kinetic studies was conducted. PhyAme displayed a stereospecificity that is unique among enzymes belonging to this class in that it preferentially cleaved Ins P6 at one of two phosphate positions, 1D-3 or 1D-4. PhyAme followed two distinct and specific routes of hydrolysis, predominantly degrading Ins P6 to Ins(2)P via: (a) 1D-Ins(1,2,4,5,6)P5, 1D-Ins(1,2,5,6)P4, 1D-Ins(1,2,6)P3, and 1D-Ins(1,2)P2 (60%) and (b) 1D-Ins(1,2,3,5,6)P5, 1D-Ins(1,2,3,6)P4, Ins(1,2,3)P3, and d/l-Ins(1,2)P2 (35%).  相似文献   

8.
Plant ribonucleic acids which have high adenosine monophosphate concentrations were studied. Purified deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid fractions both contained poly-adenosine monophosphate sequences (those from the latter being longer than those from the former); without these poly-adenosine monophosphate sequences their base compositions were the same. The average poly-adenosine monophosphate sequence from purified tenaciously bound ribonucleic acid was 160 residues long, as measured by gel electrophoresis. However, base hydrolysis and chromatography indicated one 3′-nucleoside (adenosine) per 71 nucleotides, giving a chain length of 72 residues. The dominant species in the cytoplasm, as measured by radioactive precursor incorporation, was tenaciously bound ribonucleic acid, whereas deoxyribonucleic acid-like ribonucleic acid was present in greater amounts in the nucleus. This work provides evidence that deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid represent forms of messenger ribonucleic acid in soybean, with deoxyribonucleic acid-like ribonucleic acid residing in the nucleus, perhaps as the messenger ribonucleic acid precursor, and tenaciously bound ribonucleic acid residing, as the active messenger ribonucleic acid, in the cytoplasm.  相似文献   

9.
1. Rats were injected with [U-14C]glucose and the content of 14C in proteins and lipids of the cerebral P1 (`nuclear'), P2 (`mitochondrial'), P3 (`microsomal') and high-speed supernatant fractions was measured 7, 22 and 93hr. after injection of labelled glucose. 2. The crude brain mitochondrial fractions (P2) were subfractionated on continuous sucrose gradients (0·32–1·8m-sucrose) and the 14C content of the proteins and lipids of about 20 subfractions was measured. 3. About 40–50% of the 14C assimilated by brain proteins was found in the P2 (`mitochondrial') fraction. About 68–70% of the 14C assimilated by brain lipids was also recovered from the lipids of the P2 fraction. 4. Between 22 and 93hr. after injection of [U-14C]glucose both the amount of 14C in the protein of the P2 (`mitochondrial') fraction and the specific activity of this protein increased. The specific activity of the protein of all other particulate fractions (P1, P2 and P3) and subfractions (obtained from sucrose-density-gradient subfractionation of fraction P2) when related to the specific activity of the high-speed supernatant protein also increased during 93hr. after injection of [U-14C]glucose. The amount of 14C in the protein of the high-speed supernatant and the specific activity of this protein decreased during the same period. 5. The distribution of 14C in the lipids of all subcellular particulate fractions remained unchanged during the period 22–93hr. after injection of [U-14C]glucose. 6. It was concluded that a diffusion occurs of some supernatant proteins into subcellular particulate matter of the cerebrum and no significant preference for any subcellular particulate matter was observed. The lipids occur in the cerebrum mainly in a non-diffusible state, which is consistent with the view that they form almost entirely a part of the structure of the cerebrum. 7. The data obtained do not lend further support to the concept of axoplasmic flow within the cerebrum or the concept of a one-directional flow of mitochondria or other subcellular particles within the cerebrum.  相似文献   

10.
Yeast cells of mating type α excrete a sex factor which inhibits cell division and deoxyribonucleic acid replication but not ribonucleic acid or protein synthesis in cells of opposite mating type a.  相似文献   

11.
Large-scale production and concentration procedures have been standardized to study the biological properties of Rauscher leukemia virus produced from the high-passaged JLS-V9-H mouse bone marrow cell line. Virus produced early (days 4 to 6) in the harvest and refeed cycle contained higher levels of ribonucleic acid-directed deoxyribonucleic acid polymerase activity and was more infectious than Rauscher leukemia virus produced later (days 7 to 10) in the growth period. The peak of virus production as detected by physical assays (virus particle count, protein, and p30 antigen) was highest at day 6, whereas the optimum biological and ribonucleic acid-directed deoxyribonucleic acid polymerase activity occurred 24 h earlier. When product characterization values of each concentrate were adjusted to a specific activity (i.e., per milligram of protein) basis, virus particle counts averaged 4 x 10(11) through days 5 to 9, and the peak infectivity occurred at day 4, whereas ribonucleic acid-directed deoxyribonucleic acid polymerase activity was highest at day 4 (endogenous) and 5 (exogenous). Sodium dodecyl sulfate-polyacrylamide gel analysis revealed only slight differences in the polypeptide pattern of Rauscher leukemia virus harvested from cultures of varying age, although Rauscher leukemia virus produced between days 3 and 5 contained more glycoprotein than either earlier or later harvests.  相似文献   

12.
Large-scale production and concentration procedures have been standardized to study the biological properties of Rauscher leukemia virus produced from the high-passaged JLS-V9-H mouse bone marrow cell line. Virus produced early (days 4 to 6) in the harvest and refeed cycle contained higher levels of ribonucleic acid-directed deoxyribonucleic acid polymerase activity and was more infectious than Rauscher leukemia virus produced later (days 7 to 10) in the growth period. The peak of virus production as detected by physical assays (virus particle count, protein, and p30 antigen) was highest at day 6, whereas the optimum biological and ribonucleic acid-directed deoxyribonucleic acid polymerase activity occurred 24 h earlier. When product characterization values of each concentrate were adjusted to a specific activity (i.e., per milligram of protein) basis, virus particle counts averaged 4 x 10(11) through days 5 to 9, and the peak infectivity occurred at day 4, whereas ribonucleic acid-directed deoxyribonucleic acid polymerase activity was highest at day 4 (endogenous) and 5 (exogenous). Sodium dodecyl sulfate-polyacrylamide gel analysis revealed only slight differences in the polypeptide pattern of Rauscher leukemia virus harvested from cultures of varying age, although Rauscher leukemia virus produced between days 3 and 5 contained more glycoprotein than either earlier or later harvests.  相似文献   

13.
Major differences betwean the determinate (dt1Dt2,dt1dt2), semideterminate (Dt1Dt2), and indeterminate (Dt1dt2) near-isogenic lines of glycine max (L.) Merr, mainly appeared after R1 (reproductive) stage. Increases in specific leaf matter (SLM) between Rl and R6 stages showed that determinate lines have higher SLM than semideterminate or indeterminate lines. Soluble protein and starch also accumulated more rapidly in determinate lines. Insoluble protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA), reducing saccharides, chlorophyll, and soluble saccharides contents of leaf from determinate lines resembled those of semideterminate and indeterminate lines.  相似文献   

14.
1. The synthesis of ribonucleic acid, desoxyribomicleic acid, and protein in S. muscae has been studied: (a) during the lag phase, (b) during the early log phase, and (c) while the cells are forming an adaptive enzyme for lactose utilization. 2. During the lag phase there may be a 60 per cent increase in ribonucleic acid and protein and a 50 per cent increase in dry weight without a change in cell count, as determined microscopically, or an increase in turbidity. 3. During this period, the increase in protein closely parallels the increase in ribonucleic acid, in contrast to desoxyribonucleic acid, which begins to be synthesized about 45 minutes after the protein and ribonucleic acid have begun to increase. 4. The RNA N/protein N ratio is proportional to the growth rate of all S. muscae strains studied. 5. While the RNA content per cell during the early log phase depends upon the growth rate, the DNA content per cell is fairly constant irrespective of the growth rate of the cell. 6. Resting cells of S. muscae have approximately the same RNA content per cell irrespective of their prospective growth rate. 7. While the cells are adapting to lactose, during which time there is little or no cellular division, there is never an increase of protein without a simultaneous increase in ribonucleic acid, the RNA N/protein N ratio during these intervals being approximately 0.15. 8. Lactose-adapting cells show a loss of ribonucleic acid. The purines-pyrimidines of the ribonucleic acid can be recovered in the cold 5 per cent trichloroacetic acid fraction, but the ribose component is completely lost from the system. 9. The significance of these results is discussed in relation to the importance of ribonucleic acid for protein synthesis.  相似文献   

15.
Summary Chloroplast DNA of Chlamydomonas reinhardi contains many inverted repeated sequences. Analysis by hydroxyapatite binding, S1 nuclease digestion, and electron microscopy indicates that these sequences are 0.1–0.3 kilobase pairs in length, are widely distributed in the chloroplast genome, and make up 4–7% of the chloroplast DNA.Abbreviations RNA ribonucleic acid - rRNA ribosomal RNA - RNA complementary RNA - DNA deoxyribonucleic acid - chl DNA chloroplast DNA - HAP hydroxypatite - SSC 0.15 M NaCl, 0.015 M sodium citrate - 0.1xSSC, 2xSSC, 4.67xSSC 0.1, 2, and 4.67 times the concentration of SSC, respectively - TCA trichloroacetic acid - PB NaPO4 buffer, pH 6.8 - Kb Kilobase - KbP Kilobase pair  相似文献   

16.
Extracts from plant chloroplasts and algae catalyze the conversion of glutamate to δ-aminolevulinic acid (ALA) in the first committed step of the tetrapyrrole biosynthetic pathway leading to chlorophylls, hemes, and bilins. The conversion requires ATP, Mg2+, and NADPH as cofactors. Soluble extracts from Chlorella vulgaris have now been resolved into four macromolecular fractions, all of which are required to reconstitute activity. One fraction contains a low molecular weight RNA which can be separated from the protein components in an active high-speed supernatant by treatment with 1 molar NaCl followed by precipitation of the proteins with (NH4)2SO4 at 70% saturation. The proteins recovered from the (NH4)2SO4 precipitate are reactivated by addition of a fraction containing tRNAs isolated from Chlorella by phenol-chloroform extraction and DEAE cellulose chromatography. Three required protein fractions were resolved from the RNA-depleted (NH4)2SO4 precipitate by serial affinity chromatography on Reactive Blue 2-Sepharose and 2′,5′-ADP-agarose. Glycerol was found to stabilize the enzyme activity during the separation process. The majority of the glutamate:tRNA ligase activity was associated with the fraction which was retained by Blue-Sepharose and not retained by ADP-agarose, in agreement with the reported properties of the affinity ligands. The active material in the fraction not retained by Blue-Sepharose eluted as a single component on gel filtration chromatography, with an apparent molecular weight of 67,000. The active component in the RNA fraction also eluted as a single component on gel filtration chromatography.  相似文献   

17.
Cells of Arthrobacter atrocyaneus and A. crystallopoietes, harvested during their exponential phase, were starved in 0.03 M phosphate buffer (pH 7.0) for 28 days. During this time, the cells maintained 90 to 100% viability. Experimental results were similar for both organisms. Total cellular deoxyribonucleic acid was maintained. Measurable degradation rates for deoxyribonucleic acid as determined by radioisotope techniques were not observed, and only during the initial hours of starvation could a synthetic rate be determined. Total ribonucleic acid levels remained stable for the first 24 h of starvation, after which slow, continuous loss of orcinol-reactive material occurred. Synthetic and degradative rates of ribonucleic acid, as determined by radioisotope techniques, dropped quickly at the onset of starvation. Constant basal rates were attained after 24 h. In A. atrocyaneus, total cell protein was degraded continuously from the onset of starvation. In A. crystallopoietes, total cell protein remained stable for the first 24 h, after which slow continuous loss occurred. After 28 days, the total protein per cell was similar for both organisms. In the first week, amino acid pools stabilized at about 50% of the values characteristic of growth. Rates of degradation of protein decreased rapidly for the first 24 h for both organisms, but leveled to a constant basal rate thereafter. Rates of new protein synthesis dropped during the first 24 h and by 48 h achieved a constant basal rate.  相似文献   

18.

Introduction

Bone remodelling and increased subchondral densification are important in osteoarthritis (OA). Modifications of bone vascularization parameters, which lead to ischemic episodes associated with hypoxic conditions, have been suspected in OA. Among several factors potentially involved, leptin and dickkopf-related protein 2 (DKK2) are good candidates because they are upregulated in OA osteoblasts (Obs). Therefore, in the present study, we investigated the hypothesis that hypoxia may drive the expression of leptin and DKK2 in OA Obs.

Methods

Obs from the sclerotic portion of OA tibial plateaus were cultured under either 20% or 2% oxygen tension in the presence or not of 50 nM 1,25-dihydroxyvitamin D3 (VitD3). The expression of leptin, osteocalcin, DKK2, hypoxia-inducible factor 1α (Hif-1α) and Hif-2α was measured by real-time polymerase chain reaction and leptin production was measured by enzyme-linked immunosorbent assay (ELISA). The expression of Hif-1α, Hif-2α, leptin and DKK2 was reduced using silencing RNAs (siRNAs). The signalling pathway of hypoxia-induced leptin was investigated by Western blot analysis and with mitogen-activated protein kinase (MAPK) inhibitors.

Results

The expression of leptin and DKK2 in Obs was stimulated 7-fold and 1.8-fold, respectively (P <0.05) under hypoxia. Interestingly, whereas VitD3 stimulated leptin and DKK2 expression 2- and 4.2-fold, respectively, under normoxia, it stimulated their expression by 28- and 6.2-fold, respectively, under hypoxia (P <0.05). The hypoxia-induced leptin production was confirmed by ELISA, particularly in the presence of VitD3 (P <0.02). Compared to Obs incubated in the presence of scramble siRNAs, siHif-2α inhibited VitD3-stimulated leptin mRNA and protein levels by 70% (P =0.004) and 60% (P <0.02), respectively, whereas it failed to significantly alter the expression of DKK2. siHif-1α has no effect on these genes. Immunoblot analysis showed that VitD3 greatly stabilized Hif-2α under hypoxic conditions. The increase in leptin expression under hypoxia was also regulated, by p38 MAPK (P <0.03) and phosphoinositide 3-kinase (P <0.05). We found that the expression of leptin and DKK2 were not related to each other under hypoxia.

Conclusions

Hypoxic conditions via Hif-2 regulation trigger Obs to produce leptin, particularly under VitD3 stimulation, whereas DKK2 is regulated mainly by VitD3 rather than hypoxia.  相似文献   

19.
The distribution of 12 acid hydrolase and two polysaccharide depolymerase enzymes in the rumen entodiniomorphid ciliatePolyplastron multivesiculatum, isolated from the ovine rumen 2 h after feeding, was examined by differential and density-gradient centrifugation. Approximately 60%–70% of the recovered activity was sedimentable in fractions prepared by centrifugation at 103 g for 10 min (F1) and 104 g for 10 min (F2) with 25%–35% of the acid hydrolases and 15%–20% of acid phosphatase and the polysaccharidases remaining nonsedimentable (in fraction F5) after centrifugation at 105 g for 60 min. Approximately 60% of the sedimentable activity was located in fraction F1. Latency of the hydrolase activity was demonstrated. After isopycnic centrifugation in sucrose density gradients, the hydrolytic enzymes cosedimented in acid phosphatase-containing, membrane-bound, pleomorphic lysosomelike vesicles 0.1–1.0 m in size, with a mean equilibrium density of 1.17 (1.15–1.19) g/ml.  相似文献   

20.
Rauscher murine leukemia virus was produced in roller-bottle cultures of chronically infected JLS-V9 cells. Virus from this culture fluid was concentrated and purified by two semi-isopycnic bandings in sucrose gradients. Virus material obtained from young, nonconfluent cultures (early-harvest virus) yielded products characteristically containing endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with high specific activity (400 to 1,000 pmol of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour). Fluids obtained from older confluent cultures (late-harvest virus) yielded products with endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with little or no specific activity (200 pmol or less of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour), but with higher virus particle counts and greater amounts of protein and gs antigen than the early-harvest products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号