首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a long carboxyl-terminal tail. Early studies suggested that GIRK1 was an integral component of native GIRK channels. However, more recent data indicate that native channels can be either homo- or heterotetrameric complexes composed of several GIRK subunit combinations. The functional implications of subunit composition are poorly understood at present. The purpose of this study was to examine the functional and biochemical properties of GIRK channels formed by the co-assembly of GIRK2 and GIRK3, the most abundant GIRK subunits found in the mammalian brain. To examine the properties of a channel composed of these two subunits, we co-transfected GIRK2 and GIRK3 in CHO-K1 cells and assayed the cells for channel activity by patch clamp. The most significant difference between the putative GIRK2/GIRK3 heteromultimeric channel and GIRK1/GIRKx channels at the single channel level was an approximately 5-fold lower sensitivity to activation by Gbetagamma. Complexes containing only GIRK2 and GIRK3 could be immunoprecipitated from transfected cells and could be purified from native brain tissue. These data indicate that functional GIRK channels composed of GIRK2 and GIRK3 subunits exist in brain.  相似文献   

2.
The betagamma subunits of G proteins modulate inwardly rectifying potassium (GIRK) channels through direct interactions. Although GIRK currents are stimulated by mammalian Gbetagamma subunits, we show that they were inhibited by the yeast Gbetagamma (Ste4/Ste18) subunits. A chimera between the yeast and the mammalian Gbeta1 subunits (ymbeta) stimulated or inhibited GIRK currents, depending on whether it was co-expressed with mammalian or yeast Ggamma subunits, respectively. This result underscores the critical functional influence of the Ggamma subunits on the effectiveness of the Gbetagamma complex. A series of chimeras between Ggamma2 and the yeast Ggamma revealed that the C-terminal half of the Ggamma2 subunit is required for channel activation by the Gbetagamma complex. Point mutations of Ggamma2 to the corresponding yeast Ggamma residues identified several amino acids that reduced significantly the ability of Gbetagamma to stimulate channel activity, an effect that was not due to improper association with Gbeta. Most of the identified critical Ggamma residues clustered together, forming an intricate network of interactions with the Gbeta subunit, defining an interaction surface of the Gbetagamma complex with GIRK channels. These results show for the first time a functional role for Ggamma in the effector role of Gbetagamma.  相似文献   

3.
G-protein-coupled inward rectification K(+) (GIRK) channels play an important role in modulation of synaptic transmission and cellular excitability. The GIRK channels are regulated by diverse intra- and extracellular signaling molecules. Previously, we have shown that GIRK1/GIRK4 channels are activated by extracellular protons. The channel activation depends on a histidine residue in the M1-H5 linker and may play a role in neurotransmission. Here, we show evidence that the heteromeric GIRK1/GIRK4 channels are inhibited by intracellular acidification. This inhibition was produced by selective decrease in the channel open probability with a modest drop in the single-channel conductance. The inhibition does not seem to require G-proteins as it was seen in two G-protein coupling-defective GIRK mutants and in excised patches in the absence of exogenous G-proteins. Three histidine residues in intracellular domains were critical for the inhibition. Individual mutation of His-64, His-228, or His-352 in GIRK4 abolished or greatly diminished the inhibition in homomeric GIRK4. Mutations of any of these histidine residues in GIRK4 or their counterparts in GIRK1 were sufficient to eliminate the pH(i) sensitivity of the heteromeric GIRK1/GIRK4 channels. Thus, the molecular and biophysical bases for the inhibition of GIRK channels by intracellular protons are illustrated. Because of the inequality of the pH(i) and pH(o) in most cells and their relatively independent controls by cellular versus systemic mechanisms, such pH(i) sensitivity may allow these channels to regulate cellular excitability in certain physiological and pathophysiological conditions when intracellular acidosis occurs.  相似文献   

4.
G protein–sensitive inwardly rectifying potassium (GIRK) channels are important pharmaceutical targets for neuronal, cardiac, and endocrine diseases. Although a number of GIRK channel modulators have been discovered in recent years, most lack selectivity. GIRK channels function as either homomeric (i.e., GIRK2 and GIRK4) or heteromeric (e.g., GIRK1/2, GIRK1/4, and GIRK2/3) tetramers. Activators, such as ML297, ivermectin, and GAT1508, have been shown to activate heteromeric GIRK1/2 channels better than GIRK1/4 channels with varying degrees of selectivity but not homomeric GIRK2 and GIRK4 channels. In addition, VU0529331 was discovered as the first homomeric GIRK channel activator, but it shows weak selectivity for GIRK2 over GIRK4 (or G4) homomeric channels. Here, we report the first highly selective small-molecule activator targeting GIRK4 homomeric channels, 3hi2one-G4 (3-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-3-hydroxy-1-(1-naphthylmethyl)-1,3-dihydro-2H-indol-2-one). We show that 3hi2one-G4 does not activate GIRK2, GIRK1/2, or GIRK1/4 channels. Using molecular modeling, mutagenesis, and electrophysiology, we analyzed the binding site of 3hi2one-G4 formed by the transmembrane 1, transmembrane 2, and slide helix regions of the GIRK4 channel, near the phosphatidylinositol-4,5-bisphosphate binding site, and show that it causes channel activation by strengthening channel–phosphatidylinositol-4,5-bisphosphate interactions. We also identify slide helix residue L77 in GIRK4, corresponding to residue I82 in GIRK2, as a major determinant of isoform-specific selectivity. We propose that 3hi2one-G4 could serve as a useful pharmaceutical probe in studying GIRK4 channel function and may also be pursued in drug optimization studies to tackle GIRK4-related diseases such as primary aldosteronism and late-onset obesity.  相似文献   

5.
Silberberg SD  Li M  Swartz KJ 《Neuron》2007,54(2):263-274
P2X receptors are trimeric cation channels that open in response to binding of extracellular ATP. Each subunit contains a large extracellular ligand binding domain and two flanking transmembrane (TM) helices that form the pore, but the extent of gating motions of the TM helices is unclear. We probed these motions using ivermectin (IVM), a macrocyclic lactone that stabilizes the open state of P2X(4) receptor channels. We find that IVM partitions into lipid membranes and that transfer of the TM regions of P2X(4) receptors is sufficient to convey sensitivity to the lactone, suggesting that IVM interacts most favorably with the open conformation of the two TM helices at the protein-lipid interface. Scanning mutagenesis of the two TMs identifies residues that change environment between closed and open states, and substitutions at a subset of these positions weaken IVM binding. The emerging patterns point to widespread rearrangements of the TM helices during opening of P2X receptor channels.  相似文献   

6.
G-protein-coupled inwardly rectifying potassium channels (GIRK / Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K+ ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein βγ subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast gating. This result suggests that there is a cooperative movement of both of these domains to allow fast and efficient gating of GIRK channels.  相似文献   

7.
G protein-gated inwardly rectifying K+ channels (GIRKs) are activated by a direct interaction with Gbetagamma subunits and also by raised internal [Na+]. Both processes require the presence of phosphatidylinositol bisphosphate (PIP2). Here we show that the proximal C-terminal region of GIRK2 mediates the Na+-dependent activation of both the GIRK2 homomeric channels and the GIRK1/GIRK2 heteromeric channels. Within this region, GIRK2 has an aspartate at position 226, whereas GIRK1 has an asparagine at the equivalent position (217). A single point mutation, D226N, in GIRK2, abolished the Na+-dependent activation of both the homomeric and heteromeric channels. Neutralizing a nearby negative charge, E234S had no effect. The reverse mutation in GIRK1, N217D, was sufficient to restore Na+-dependent activation to the GIRK1N217D/GIRK2D226N heteromeric channels. The D226N mutation did not alter either the single channel properties or the ability of these channels to be activated via the m2-muscarinic receptor. PIP2 dramatically increased the open probability of GIRK1/GIRK2 channels in the absence of Na+ or Gbetagamma but did not preclude further activation by Na+, suggesting that Na+ is not acting simply to promote PIP2 binding to GIRKs. We conclude that aspartate 226 in GIRK2 plays a crucial role in Na+-dependent gating of GIRK1/GIRK2 channels.  相似文献   

8.
Ramu Y  Klem AM  Lu Z 《Biochemistry》2004,43(33):10701-10709
Tertiapin (TPN), a small protein toxin originally isolated from honey bee venom, inhibits only certain eukaryotic inward-rectifier K(+) (Kir) channels with high affinity. We found that a short ( approximately 10 residues) sequence in Kir channels, located in the N-terminal part of the linker between the two transmembrane segments, is essential for high-affinity inhibition by TPN and that variability in the region underlies the great variation of TPN affinities among eukaryotic Kir channels. This short variable region is however not present in a bacterial Kir channel (KirBac1.1) or in many other types of prokaryotic and eukaryotic K(+) channels. Thus, the acquisition in evolution of the variable region in eukaryotic Kir channels has created the opportunity to selectively target the numerous types of Kir channel that play important physiological roles. We also show that TPN sensitivity can be readily conferred onto some Kir channels that currently have no known inhibitors by replacing their variable region with that from a TPN-sensitive channel. In heterologous expression systems, such acquired toxin sensitivity will allow currents carried by mutant channels to be readily isolated from interfering background currents. Finally we show that, in the heteromeric GIRK1/4 channels, the GIRK4 and not GIRK1 subunit confers the high affinity for TPN.  相似文献   

9.
G protein-coupled inward rectifier K(+) channels (GIRK channels) are activated directly by the G protein betagamma subunit. The crystal structure of the G protein betagamma subunits reveals that the beta subunit consists of an N-terminal alpha helix followed by a symmetrical seven-bladed propeller structure. Each blade is made up of four antiparallel beta strands. The top surface of the propeller structure interacts with the Galpha subunit. The outer surface of the betagamma torus is largely made from outer beta strands of the propeller. We analyzed the interaction between the beta subunit and brain GIRK channels by mutating the outer surface of the betagamma torus. Mutants of the outer surface of the beta(1) subunit were generated by replacing the sequences at the outer beta strands of each blade with corresponding sequences of the yeast beta subunit, STE4. The mutant beta(1)gamma(2) subunits were expressed in and purified from Sf9 cells. They were applied to inside-out patches of cultured locus coeruleus neurons. The wild type beta(1)gamma(2) induced robust GIRK channel activity with an EC(50) of about 4 nm. Among the eight outer surface mutants tested, blade 1 and blade 2 mutants (D1 and CD2) were far less active than the wild type in stimulating GIRK channels. However, the ability of D1 and CD2 to regulate type I and type II adenylyl cyclases was not very different from that of the wild type beta(1)gamma(2). As to the activities to stimulate phospholipase Cbeta(2), D1 was more potent and CD2 was less potent than the wild type beta(1)gamma(2). Additionally we tested four beta(1) mutants in which mutated residues are located in the top Galpha/beta interacting surface. Among them, mutant W332A showed far less ability than the wild type to activate GIRK channels. These results suggest that the outer surface of blade 1 and blade 2 of the beta subunit might specifically interact with GIRK and that the beta subunit interacts with GIRK both over the outer surface and over the top Galpha interacting surface.  相似文献   

10.
G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. GIRK is activated by the direct binding of heterotrimeric G protein βγ subunits (Gβγ) upon stimulation of G protein-coupled receptors, such as M2 acetylcholine receptor. The binding of Gβγ to the cytoplasmic pore (CP) region of GIRK causes structural rearrangements, which are assumed to open the transmembrane ion gate. However, the crucial residues involved in the Gβγ binding and the structural mechanism of GIRK gating have not been fully elucidated. Here, we have characterized the interaction between the CP region of GIRK and Gβγ, by ITC and NMR. The ITC analyses indicated that four Gβγ molecules bind to a tetramer of the CP region of GIRK with a dissociation constant of 250 μM. The NMR analyses revealed that the Gβγ binding site spans two neighboring subunits of the GIRK tetramer, which causes conformational rearrangements between subunits. A possible binding mode and mechanism of GIRK gating are proposed.  相似文献   

11.
We have used sulfhydryl-modifying reagents to investigate the regulation of G-protein-activated inward rectifier potassium (GIRK) channels via their cytoplasmic domains. Modification of either the conserved N-terminal cysteines (GIRK1C53 and GIRK2C65) or the middle C-terminal cysteines (GIRK1C310 and GIRK2C321) independently inhibited GIRK1/GIRK2 heteromeric channels. With the exception of GIRK2C65, these cysteines were relatively inaccessible to large modifying reagents. The accessibility was further reduced by a mutation at the end of the second transmembrane domain that stabilized the open state of the channel. Thus it is unlikely that these cysteines line the permeation pathway of the open pore. Cysteines introduced 3 and 6 amino acids upstream of GIRK2C321 (G318C and E315C) were considerably more accessible. The effect of modification was dependent on the charge of the reagent. Modification of E315C in GIRK2 and E304C in GIRK1 by sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increased the current by approximately 17-fold, whereas modification by 2-aminoethyl methanethiosulfonate hydrochloride (MTSEA(+)), abolished the current. There was no effect on single-channel conductance. Thus a switch in charge at this middle C-terminal position was sufficient to gate the channel open and closed. This glutamate is conserved in all members of the Kir family. The E303K mutation in Kir2.1 inhibits channel function and causes Andersen's syndrome in humans (Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., Donaldson, M. R., Iannaccone, S. T., Brunt, E., Barohn, R., Clark, J., Deymeer, F., George, A. L., Jr., Fish, F. A., Hahn, A., Nitu, A., Ozdemir, C., Serdaroglu, P., Subramony, S. H., Wolfe, G., Fu, Y. H., and Ptacek, L. J. (2001) Cell 105, 511-519 and Preisig-Muller, R., Schlichthorl, G., Goerge, T., Heinen, S., Bruggemann, A., Rajan, S., Derst, C., Veh, R. W., and Daut, J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7774-7779). Our results suggest that this residue regulates channel gating through an electrostatic mechanism.  相似文献   

12.
Riven I  Kalmanzon E  Segev L  Reuveny E 《Neuron》2003,38(2):225-235
G protein-coupled potassium channels (GIRK/Kir3.x) are key determinants that translate inhibitory chemical neurotransmission into changes in cellular excitability. To understand the mechanism of channel activation by G proteins, it is necessary to define the structural rearrangements in the channel that result from interaction with Gbetagamma subunits. In this study we used a combination of fluorescence spectroscopy and through-the-objective total internal reflection microscopy to monitor the conformational rearrangements associated with the activation of GIRK channels in single intact cells. We detect activation-induced changes in FRET consistent with a rotation and expansion of the termini along the central axis of the channel. We propose that this rotation and expansion of the termini drives the channel to open by bending and possibly rotating the second transmembrane segment.  相似文献   

13.
Direct interactions of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) with inwardly rectifying potassium channels are stronger with channels rendered constitutively active by binding to PtdIns(4,5)P2, such as IRK1, than with G-protein-gated channels (GIRKs). As a result, PtdIns(4,5)P2 alone can activate IRK1 but not GIRKs, which require extra gating molecules such as the beta gamma subunits of G proteins or sodium ions. Here we identify two conserved residues near the inner-membrane interface of these channels that are critical in interactions with PtdIns(4,5)P2. Between these two arginines, a conservative change of isoleucine residue 229 in GIRK4 to the corresponding leucine found in IRK1 strengthens GIRK4-PtdIns(4,5)P2 interactions, eliminating the need for extra gating molecules. A negatively charged GIRK4 residue, two positions away from the most strongly interacting arginine, mediates stimulation of channel activity by sodium by strengthening channel-PtdIns(4,5)P2 interactions. Our results provide a mechanistic framework for understanding how distinct gating mechanisms of inwardly rectifying potassium channels allow these channels to subserve their physiological roles.  相似文献   

14.
Gbetagamma subunits interact directly and activate G protein-gated Inwardly Rectifying K(+) (GIRK) channels. Little is known about the identity of functionally important interactions between Gbetagamma and GIRK channels. We tested the effects of all mammalian Gbeta subunits on channel activity and showed that whereas Gbeta1-4 subunits activate heteromeric GIRK channels independently of receptor activation, Gbeta5 does not. Gbeta1 and Gbeta5 both bind the N and C termini of the GIRK1 and GIRK4 channel subunits. Chimeric analysis between the Gbeta1 and Gbeta5 proteins revealed a 90-amino acid stretch that spans blades two and three of the seven-propeller structure and is required for channel activation. Within this region, eight non-conserved amino acids were critical for the activity of Gbeta1, as mutation of each residue to its counterpart in Gbeta5 significantly reduced the ability of Gbeta1 to stimulate channel activity. In particular, mutation of residues Ser-67 and Thr-128 to the corresponding Gbeta5 residues completely abolished Gbeta1 stimulation of GIRK channel activity. Mapping these functionally important residues on the three-dimensional structure of Gbeta1 shows that Ser-67, Ser-98, and Thr-128 are the only surface accessible residues. Galpha(i)1 interacts with Ser-98 but not with Ser-67 and Thr-128 in the heterotrimeric Galphabetagamma structure. Further characterization of the three mutant proteins showed that they fold properly and interact with Ggamma2. Of the three identified functionally important residues, the Ser-67 and Thr-128 Gbeta mutants significantly inhibited basal currents of a channel point mutant that displays Gbetagamma-mediated basal but not agonist-induced currents. Our findings indicate that the presence of Gbeta residues that do not interact with Galpha are involved in Gbetagamma interactions in the absence of agonist stimulation.  相似文献   

15.
Gbetagamma subunits are known to bind to and activate G-protein-activated inwardly rectifying K(+) channels (GIRK) by regulating their open probability and bursting behavior. Studying G-protein regulation of either native GIRK (I(KACh)) channels in feline atrial myocytes or heterologously expressed GIRK1/4 channels in Chinese hamster ovary cells and HEK 293 cells uncovered a novel Gbetagamma subunit mediated regulation of the inwardly rectifying properties of these channels. I(KACh) activated by submaximal concentrations of acetylcholine exhibited a approximately 2.5-fold stronger inward rectification than I(KACh) activated by saturating concentrations of acetylcholine. Similarly, the inward rectification of currents through GIRK1/4 channels expressed in HEK cells was substantially weakened upon maximal stimulation with co-expressed Gbetagamma subunits. Analysis of the outward current block underlying inward rectification demonstrated that the fraction of instantaneously blocked channels was reduced when Gbetagamma was over-expressed. The Gbetagamma induced weakening of inward rectification was associated with reduced potencies for Ba(2+) and Cs(+) to block channels from the extracellular side. Based on these results we propose that saturation of the channel with Gbetagamma leads to a conformational change within the pore of the channel that reduced the potency of extracellular cations to block the pore and increased the fraction of channels inert to a pore block in outward direction.  相似文献   

16.
The weaver mutation (G156S) in G-protein-gated inwardly rectifying K+ (GIRK) channels alters ion selectivity and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains (M1-pore-loop-M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in I1G1(M) is indistinguishable from that in GIRK2(wv) channels. Whereas chimera I1G1(M) loses K+ selectivity, although there are no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits normal K+ selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T) restores K+ selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from extracellular charged local anesthetics.  相似文献   

17.
G protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels mediate the postsynaptic inhibitory effects of many neurotransmitters and drugs of abuse. The lack of drugs selective for GIRK channels has hindered our ability to study their contributions to behavior. Here, we assessed the impact of GIRK subunit ablation on several behavioral endpoints. Mice were evaluated with respect to open-field motor activity and habituation, anxiety-related behavior, motor co-ordination and ataxia and operant performance. GIRK3 knockout ((-/-)) mice behaved indistinguishably from wild-type mice in this panel of tests. GIRK1(-/-) mice and GIRK2(-/-) mice, however, showed elevated motor activity and delayed habituation to an open field. GIRK2(-/-) mice, and to a lesser extent GIRK1(-/-) mice, also displayed reduced anxiety-related behavior in the elevated plus maze. Both GIRK1(-/-) mice and GIRK2(-/-) mice displayed marked resistance to the ataxic effects of the GABA(B) receptor agonist baclofen in the rotarod test. All GIRK(-/-) mice were able to learn an operant task using food as the reinforcing agent. Within-session progressive ratio scheduling, however, showed elevated lever press behavior in GIRK2(-/-) mice and, to a lesser extent, in GIRK1(-/-) mice. Phenotypic differences between mice lacking GIRK1, GIRK2 and GIRK3 correlate well with the known impact of GIRK subunit ablation on neurotransmitter-gated GIRK currents, arguing that most neuronal GIRK channels contain GIRK1 and/or GIRK2. Altogether, our data suggest that GIRK channels make important contribution to a range of behaviors and may represent points of therapeutic intervention in disorders of anxiety, spasticity and reward.  相似文献   

18.
G protein-sensitive inwardly rectifying potassium (GIRK) channels are activated through direct interactions of their cytoplasmic N- and C-terminal domains with the beta gamma subunits of G proteins. By using a combination of biochemical and electrophysiological approaches, we identified minimal N- and C-terminal G beta gamma -binding domains responsible for stimulation of GIRK4 channel activity. Within these domains one N-terminal residue, His-64, and one C-terminal residue, Leu-268, proved critical for G beta gamma-mediated GIRK4 activity. Moreover, mutations at these GIRK4 sites reduced significantly binding of the channel domains to G beta gamma . The corresponding residues in GIRK1 also showed a critical involvement in G beta gamma sensitivity. In GIRK4/GIRK1 heteromers the GIRK4 His-64 and Leu-268 residues showed greater contributions to G beta zeta sensitivity than did the corresponding GIRK1 His-57 and Leu-262 residues. These results identify functionally important channel interaction sites with the beta gamma subunits of G proteins, critical for channel activity.  相似文献   

19.
G protein-activated K+ channels (Kir3 or GIRK) are activated by direct binding of Gbetagamma. The binding sites of Gbetagamma in the ubiquitous GIRK1 (Kir3.1) subunit have not been unequivocally charted, and in the neuronal GIRK2 (Kir3.2) subunit the binding of Gbetagamma has not been studied. We verified and extended the map of Gbetagamma-binding sites in GIRK1 by using two approaches: direct binding of Gbetagamma to fragments of GIRK subunits (pull down), and competition of these fragments with the Galphai1 subunit for binding to Gbetagamma. We also mapped the Gbetagamma-binding sites in GIRK2. In both subunits, the N terminus binds Gbetagamma. In the C terminus, the Gbetagamma-binding sites in the two subunits are not identical; GIRK1, but not GIRK2, has a previously unrecognized Gbetagamma-interacting segments in the first half of the C terminus. The main C-terminal Gbetagamma-binding segment found in both subunits is located approximately between amino acids 320 and 409 (by GIRK1 count). Mutation of C-terminal leucines 262 or 333 in GIRK1, recognized previously as crucial for Gbetagamma regulation of the channel, and of the corresponding leucines 273 and 344 in GIRK2 dramatically altered the properties of K+ currents via GIRK1/GIRK2 channels expressed in Xenopus oocytes but did not appreciably reduce the binding of Gbetagamma to the corresponding fusion proteins, indicating that these residues are mainly important for the regulation of Gbetagamma-induced changes in channel gating rather than Gbetagamma binding.  相似文献   

20.
To investigate possible effects of adrenergic stimulation on G protein-activated inwardly rectifying K(+) channels (GIRK), acetylcholine (ACh)-evoked K(+) current, I(KACh), was recorded from adult rat atrial cardiomyocytes using the whole cell patch clamp method and a fast perfusion system. The rise time of I(KACh ) was 0. 4 +/- 0.1 s. When isoproterenol (Iso) was applied simultaneously with ACh, an additional slow component (11.4 +/- 3.0 s) appeared, and the amplitude of the elicited I(KACh) was increased by 22.9 +/- 5.4%. Both the slow component of activation and the current increase caused by Iso were abolished by preincubation in 50 microM H89 (N-[2-((p -bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, a potent inhibitor of PKA). This heterologous facilitation of GIRK current by beta-adrenergic stimulation was further studied in Xenopus laevis oocytes coexpressing beta(2)-adrenergic receptors, m(2 )-receptors, and GIRK1/GIRK4 subunits. Both Iso and ACh elicited GIRK currents in these oocytes. Furthermore, Iso facilitated ACh currents in a way, similar to atrial cells. Cytosolic injection of 30-60 pmol cAMP, but not of Rp-cAMPS (a cAMP analogue that is inhibitory to PKA) mimicked the beta(2)-adrenergic effect. The possibility that the potentiation of GIRK currents was a result of the phosphorylation of the beta-adrenergic receptor (beta(2)AR) by PKA was excluded by using a mutant beta(2)AR in which the residues for PKA-mediated modulation were mutated. Overexpression of the alpha subunit of G proteins (Galpha(s)) led to an increase in basal as well as agonist-induced GIRK1/GIRK4 currents (inhibited by H89). At higher levels of expressed Galpha(s), GIRK currents were inhibited, presumably due to sequestration of the beta/gamma subunit dimer of G protein. GIRK1/GIRK5, GIRK1/GIRK2, and homomeric GIRK2 channels were also regulated by cAMP injections. Mutant GIRK1/GIRK4 channels in which the 40 COOH-terminal amino acids (which contain a strong PKA phosphorylation consensus site) were deleted were also modulated by cAMP injections. Hence, the structural determinant responsible is not located within this region. We conclude that, both in atrial myocytes and in Xenopus oocytes, beta-adrenergic stimulation potentiates the ACh-evoked GIRK channels via a pathway that involves PKA-catalyzed phosphorylation downstream from beta(2)AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号