首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

2.
We examined the effects of 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on the distribution and mobility of the vitamin D receptor (VDR) in the enterocyte-like Caco-2 cell. Confocal microscopy showed that a green fluorescent protein-vitamin D receptor (GFP-VDR) fusion protein is predominantly nuclear (58%) and it does not associate with the apical or basolateral membrane of proliferating or polarized, differentiated cells. In contrast to the previously studied cell types, neither endogenous VDR nor GFP-VDR levels accumulate in the nucleus following 1,25(OH)(2)D(3) treatment (100 nM, 30 min). However, in nuclear photobleaching experiments nuclear GFP-VDR import was significantly increased by 1,25(OH)(2)D(3) during both an early (0-5 min) and later (30-35 min) period (20% per 5 min). Compared to the natural ligand, nuclear import of GFP-VDR was 60% lower in cells treated with the 1,25(OH)(2)D(3) analog, 1-alpha-fluoro-16-ene-20-epi-23-ene-26,27-bishomo-25-hydroxyvitamin D(3) (Ro-26-9228, 5 min, 100 nM). Downstream events like ligand-induced association of VDR with chromatin at 1 h and the accumulation of CYP24 mRNA were significantly lower in Ro-26-9228 treated cells compared to 1,25(OH)(2)D(3) (60 and 95% lower, respectively). Collectively our data are consistent with a role for ligand-induced nuclear VDR import in receptor activation. In addition, ligand-dependent VDR nuclear import appears to be balanced by export, thus accounting for the lack of nuclear VDR accumulation even when VDR import is significantly elevated.  相似文献   

3.
4.
5.
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.  相似文献   

6.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

7.
8.
Targeted deletion of genes encoding the 1,25-dihydroxyVitamin D [1,25(OH)(2)D]-synthesizing enzyme, 25 hydroxyVitamin D-1alpha-hydroxylase [1alpha(OH)ase or CYP27B1], and of the nuclear receptor for 1,25(OH)(2)D, the Vitamin D receptor (VDR), have provided useful mouse models of the inherited human diseases, Vitamin D-dependent rickets types I and II. We employed these models and double null mutants to examine the effects of calcium and of the 1,25(OH)(2)D/VDR system on skeletal and calcium homeostasis. Optimal dietary calcium absorption required both 1,25(OH)(2)D and the VDR. Skeletal mineralization was dependent on adequate ambient calcium but did not directly require the 1,25(OH)(2)D/VDR system. Parathyroid hormone (PTH) secretion was also modulated primarily by ambient serum calcium but the enlarged parathyroid glands which the mutants exhibited and the widened cartilaginous growth plates could only be normalized by the combination of calcium and 1,25(OH)(2)D, apparently independently of the VDR. Optimal osteoclastic bone resorption and osteoblastic bone formation both required an intact 1,25(OH)(2)D/VDR apparatus. The results indicate that calcium cannot entirely substitute for Vitamin D in skeletal and mineral homeostasis but that the two agents have discrete and overlapping functions.  相似文献   

9.
There is growing evidence that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, our group has explored the role of 1,25(OH)(2)D(3) in brain development using whole animal models and in vitro culture studies. The expression of the vitamin D receptor (VDR) in the embryonic rat brain rises steadily between embryonic day 15-23, and 1,25(OH)(2)D(3) induces the expression of nerve growth factor and stimulates neurite outgrowth in embryonic hippocampal explant cultures. In the neonatal rat, low prenatal vitamin D(3) in utero leads to increased brain size, altered brain shape, enlarged ventricles, reduced expression of nerve growth factors, reduced expression of the low affinity p75 receptor and increased cellular proliferation. In summary, there is growing evidence that low prenatal levels of 1,25(OH)(2)D(3) can influence critical components of orderly brain development. It remains to be seen if these processes are of clinical relevance in humans, but in light of the high rates of hypovitaminosis D in pregnant women and neonates, this area warrants further scrutiny.  相似文献   

10.
11.
12.
Most of the actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mediated by binding to the Vitamin D nuclear receptor (VDR). The crystal structure of a deletion mutant (Delta165-215) of the VDR ligand-binding domain (LBD) bound to 1,25(OH)(2)D(3) indicates that amino acid residues tyrosine-143 and serine-278 form hydrogen bonding interactions with the 3-hydroxyl group of 1,25(OH)(2)D(3). Studies of VDR and three mutants (Y143F, S278A, and Y143F/S278A) did not indicate any differences in the binding affinity between the variant receptors and the wild-type receptor. This might indicate that the 3-hydroxyl group binds differently to the full-length VDR than the to deletion mutant. To further investigate, four deletion VDR mutants were constructed: VDR(Delta165-215), VDR(Delta165-215) (Y143F), VDR(Delta165-215) (S278A), VDR(Delta165-215) (Y143F/S278A). There were no significant differences in binding affinity between the wild-type receptor and the deletion mutants except for VDR(Delta165-215) (Y143F/S278A). In gene activation assays, VDR constructs with the single mutation Y143F and the double mutation Y143F/S278A, but not the single mutation S278A required higher doses of 1,25(OH)(2)D(3) for half-maximal response. This suggests that there are some minor structural and functional differences between the wild-type VDR and the Delta165-215 deletion mutant and that Y143 residue is more important for receptor function than residue S278.  相似文献   

13.
Lithocholic acid (LCA), a secondary bile acid, is a vitamin D receptor (VDR) ligand. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the hormonal form of vitamin D, is involved in the anti-inflammatory action through VDR. Therefore, we hypothesize that LCA acts like 1,25(OH)(2)D(3) to drive anti-inflammatory signals. In present study, we used human colonic cancer cells to assess the role of LCA in regulation of the pro-inflammatory NF-kappaB pathway. We found that LCA treatment increased VDR levels, mimicking the effect of 1,25(OH)(2)D(3). LCA pretreatment inhibited the IL-1beta-induced IkappaBalpha degradation and decreased the NF-kappaB p65 phosphorylation. We also measured the production of IL-8, a well-known NF-kappaB target gene, as a read-out of the biological effect of LCA expression on NF-kappaB pathway. LCA significantly decreased IL-8 secretion induced by IL-1beta. These LCA-induced effects were very similar to those of 1,25(OH)(2)D(3.) Thus, LCA recapitulated the effects of 1,25(OH)(2)D(3) on IL-1beta stimulated cells. Mouse embryonic fibroblast (MEF) cells lacking VDR have intrinsically high NF-kappaB activity. LCA pretreatment was not able to prevent TNFalpha-induced IkappaBalpha degradation in MEF VDR (-/-), whereas LCA stabilized IkappaBalpha in MEF VDR (+/-) cells. Collectively, our data indicated that LCA activated the VDR to block inflammatory signals in colon cells.  相似文献   

14.
15.
Expression levels of adhesion molecules on HMC-1 mast cells were examined prior to and following administration of 1alpha, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. While most receptors (including ICAM-1) remained unchanged by the treatment, solely ICAM-3 expression was promoted in a dose- and time-dependent fashion, peaking at 50 nM of 1,25(OH)(2)D(3) and 72 h, illustrating that like other myeloid cells, human mast cells are 1,25(OH)(2)D(3) responsive, yet in a highly selective manner. Flow cytometric results were confirmed by ELISA, by semiquantitative RT-PCR, and functionally by showing enhanced anti-ICAM-3 mediated homotypic aggregation of 1,25(OH)(2)D(3) pretreated cells. Since cellular responsiveness is conferred by the vitamin D(3) receptor (VDR), we examined human mast cells for its expression. VDR was constitutively present in both HMC-1 and skin mast cells by RT-PCR technique and in nuclear extracts of HMC-1 cells by Western blot analysis. Our data thus suggest that human mast cells are direct targets of 1, 25(OH)(2)D(3) action.  相似文献   

16.
Whole cell 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor (VDR) binding assays, which measure VDR in the presence of the metabolic machinery of the cell, were used in conjunction with a cytosol binding assay for VDR to determine if self-induced metabolism of 1,25-(OH)2D3 limits VDR occupancy, total VDR levels, and target cell responsiveness. Treatment of cells with 0.5 nM 1,25-(OH)2[3H]D3 for 16 h results in up-regulation of total cell VDR from 82 to 170 fmol/mg protein as measured in a cytosol binding assay. Conversely, whole cell binding assays of VDR showed a 1,25-(OH)2D3-mediated apparent down-regulation of VDR from 90 to 40 fmol/mg protein. Scatchard analysis using the cytosol binding assay demonstrated that 1,25-(OH)2D3 treatment increased total cell VDR from 93 to 154 fmol/mg protein. In contrast, Scatchard analysis with the whole cell binding assay demonstrated that 1,25-(OH)2D3 treatment resulted in reduction in total cell VDR from 100 to 64 fmol/mg protein. Initial Kd estimates with the whole cell binding assay suggested that 1,25-(OH)2D3 treatment resulted in a reduction in VDR Kd from 0.6 to 6.2 nM. This apparent reduction in the affinity of VDR for 1,25-(OH)2D3 was due to degradation of free 1,25-(OH)2[3H]D3 which occurred during whole cell saturation assay. Competitive inhibitors of 1,25-(OH)2D3 metabolism were found to reverse the apparent receptor down-regulation observed in whole cell binding assays of treated cells. In addition, the presence of competitive inhibitors amplified responses of cells to 1,25-(OH)2[3H]D3 treatment as measured by an increased occupancy of VDR by 1,25-(OH)2[3H]D3 and increased up-regulation of VDR over that observed without metabolism inhibitors. These data demonstrate that self-induced target tissue deactivation of 1,25-(OH)2D3 regulates 1,25-(OH)2D3 occupancy of VDR and ultimately the biopotency of 1,25-(OH)2D3 in target cells.  相似文献   

17.
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a potent ligand for the nuclear receptor vitamin D receptor (VDR) and induces myeloid leukemia cell differentiation. The cardiotonic steroid bufalin enhances vitamin D-induced differentiation of leukemia cells and VDR transactivation activity. In this study, we examined the combined effects of 1,25(OH)2D3 and bufalin on differentiation and VDR target gene expression in human leukemia cells. Bufalin in combination with 1,25(OH)2D3 enhanced the expression of VDR target genes, such as CYP24A1 and cathelicidin antimicrobial peptide, and effectively induced differentiation phenotypes. An inhibitor of the Erk mitogen-activated protein (MAP) kinase pathway partially inhibited bufalin induction of VDR target gene expression. 1,25(OH)2D3 treatment induced transient nuclear expression of VDR in HL60 cells. Interestingly, bufalin enhanced 1,25(OH)2D3-induced nuclear VDR expression. The MAP kinase pathway inhibitor increased nuclear VDR expression induced by 1,25(OH)2D3 and did not change that by 1,25(OH)2D3 plus bufalin. A proteasome inhibitor also enhanced 1,25(OH)2D3-induced CYP24A1 expression and nuclear VDR expression. Bufalin-induced nuclear VDR expression was associated with histone acetylation and VDR recruitment to the CYP24A1 promoter in HL60 cells. Thus, the Na+,K+-ATPase inhibitor bufalin modulates VDR function through several mechanisms, including Erk MAP kinase activation and increased nuclear VDR expression.  相似文献   

18.
19.
20.
The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding. Expression of the lacZ reporter gene was widely distributed during embryogenesis and postnatally. Strong lacZ expression was found in bones, cartilage, intestine, kidney, skin, brain, heart, and parathyroid glands. Homozygous mice are a phenocopy of mice totally lacking the VDR protein and showed growth retardation, rickets, secondary hyperparathyroidism, and alopecia. Feeding of a diet high in calcium, phosphorus, and lactose normalized blood calcium and serum PTH levels, but revealed a profound renal calcium leak in normocalcemic homozygous mutants. When mice were treated with pharmacological doses of vitamin D metabolites, responses in skin, bone, intestine, parathyroid glands, and kidney were absent in homozygous mice, indicating that the mutant receptor is nonfunctioning and that vitamin D signaling pathways other than those mediated through the classical nuclear receptor are of minor physiological importance. Furthermore, rapid, nongenomic responses to 1,25-(OH)(2)D(3) in osteoblasts were abrogated in homozygous mice, supporting the conclusion that the classical VDR mediates the nongenomic actions of 1,25-(OH)(2)D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号