首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have used cationic liposomes (Lipofectin) to facilitate retrovirus infection of cells lacking the homologous viral receptor. Ecotropic murine leukemia virus and packaged retroviral vectors were shown to infect mink cells, and amphotropic packaged retroviral vectors were shown to infect hamster cells in the presence of Lipofectin but not in the presence of Polybrene. Lipofectin-mediated infection of cells lacking the homologous receptor results in a titer approximately 0.1% of the titer in cells with the homologous receptor, using the standard Polybrene protocol. The use of Lipofectin may provide a simple means to experimentally infect a wide variety of cells with viruses not normally infectious for the species, tissue, or cell type of interest.  相似文献   

3.
Coil DA  Miller AD 《Journal of virology》2004,78(20):10920-10926
The envelope protein from vesicular stomatitis virus (VSV) has become an important tool for gene transfer and gene therapy. It is widely used mainly because of its ability to mediate virus entry into all cell types tested to date. Consistent with the broad tropism of the virus, the receptor for VSV is thought to be a ubiquitous membrane lipid, phosphatidylserine (PS). However, the evidence for this hypothesis is indirect and incomplete. Here, we have examined the potential interaction of VSV and PS at the plasma membrane in more detail. Measurements of cell surface levels of PS show a wide range across cell types from different organisms. We demonstrate that there is no correlation between the cell surface PS levels and VSV infection or binding. We also demonstrate that an excess of annexin V, which binds specifically and tightly to PS, does not inhibit infection or binding by VSV. While the addition of PS to cells does allow increased virus entry, we show that this effect is not specific to the VSV envelope. We conclude that PS is not the cell surface receptor for VSV, although it may be involved in a postbinding step of virus entry.  相似文献   

4.
A M Haywood  B P Boyer 《Biochemistry》1986,25(13):3925-3929
Previous work has shown that high-speed centrifugation (300,000 g) of Sendai virus and liposomes in 40% (w/v) sucrose layered under a discontinuous sucrose gradient removes Sendai virus bound to liposomes containing the ganglioside GD1a, a Sendai virus receptor. Centrifugation also removes virus bound to liposomes containing other negatively charged lipids. This work shows that centrifugation of virus through a discontinuous ficoll gradient does not remove virus bound to liposomes containing GD1a but does remove virus from liposomes containing various other negatively charged lipids including the ganglioside GM1, which is not a Sendai virus receptor. The amount of virus that adheres to liposomes increases with increasing content of GD1a in the liposomes. The adhesion of virus to receptor-containing liposomes during centrifugation through a ficoll gradient results from the presence of ficoll and increases with increasing ficoll concentration. Virus also adheres to receptor-containing liposomes during centrifugation in the presence of dextran. These data indicate that caution should be used in interpreting associations demonstrated by centrifugation through dextran and ficoll gradients. They also indicate that binding of virus by ganglioside receptors can be modulated by carbohydrate polymers, which are thought not to have any specific interaction with either viruses or gangliosides.  相似文献   

5.
Human adenovirus (Ad) is extensively used for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to target cells expressing marginal levels of the Ad fiber receptor. Therefore, the present generation of Ad vectors could potentially be improved by modification of Ad tropism to target the virus to specific organs and tissues. The fact that coxsackievirus and adenovirus receptor (CAR) does not play any role in virus internalization, but functions merely as the virus attachment site, suggests that the extracellular part of CAR might be utilized to block the receptor recognition site on the Ad fiber knob domain. We proposed to design bispecific fusion proteins formed by a recombinant soluble form of truncated CAR (sCAR) and a targeting ligand. In this study, we derived sCAR genetically fused with human epidermal growth factor (EGF) and investigated its ability to target Ad infection to the EGF receptor (EGFR) overexpressed on cancer cell lines. We have demonstrated that sCAR-EGF protein is capable of binding to Ad virions and directing them to EGFR, thereby achieving targeted delivery of reporter gene. These results show that sCAR-EGF protein possesses the ability to effectively retarget Ad via a non-CAR pathway, with enhancement of gene transfer efficiency.  相似文献   

6.
Membrane vesicles containing the Sendai virus hemagglutinin/neuraminidase (HN) glycoprotein were able to induce carboxyfluorescein (CF) release from loaded phosphatidylserine (PS) but not loaded phosphatidylcholine (PC) liposomes. Similarly, fluorescence dequenching was observed only when HN vesicles, bearing self-quenched N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (N-NBD-PE), were incubated with PS but not PC liposomes. Thus, fusion between Sendai virus HN glycoprotein vesicles and the negatively charged PS liposomes is suggested. Induction of CF release and fluorescence dequenching were not observed when Pronase-treated HN vesicles were incubated with the PS liposomes. On the other hand, the fusogenic activity of the HN vesicles was not inhibited by treatment with dithiothreitol (DTT) or phenylmethanesulfonyl fluoride (PMSF), both of which are known to inhibit the Sendai virus fusogenic activity. Fusion was highly dependent on the pH of the medium, being maximal after an incubation of 60-90 s at pH 4.0. Electron microscopy studies showed that incubation at pH 4.0 of the HN vesicles with PS liposomes, both of which are of an average diameter of 150 nm, resulted in the formation of large unilamellar vesicles, the average diameter of which reached 450 nm. The relevance of these observations to the mechanism of liposome-membrane and virus-membrane fusion is discussed.  相似文献   

7.
Cationic liposomes enhanced the rate of transduction of target cells with retroviral vectors. The greatest effect was seen with the formulation DC-Chol/DOPE, which gave a 20-fold increase in initial transduction rate. This allowed an efficiency of transduction after brief exposure of target cells to virus plus liposome that could be achieved only after extensive exposure to virus alone. Enhancement with DC-Chol/DOPE was optimal when stable virion-liposome complexes were preformed. The transduction rate for complexed virus, as for virus used alone or with the polycation Polybrene, showed first-order dependence on virus concentration. Cationic liposomes, but not Polybrene, were able to mediate envelope-independent transduction, but optimal efficiency required envelope-receptor interaction. When virus complexed with DC-Chol/DOPE was used to transduce human mesothelioma xenografts, transduction was enhanced four- to fivefold compared to that for virus alone. Since the efficacy of gene therapy is dependent on the number of cells modified, which is in turn dependent upon the balance between transduction and biological clearance of the vector, the ability of cationic liposomes to form stable complexes with retroviral vectors and enhance their rate of infection is likely to be important for in vivo application.  相似文献   

8.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

9.
Phosphatidylserine (PS) on apoptotic cells promotes their uptake and induces anti-inflammatory responses in phagocytes, including TGF-beta release. Little is known regarding the effects of PS on adaptive immune responses. We therefore investigated the effects of PS-containing liposomes on immune responses in mice in vivo. PS liposomes specifically inhibited responses to Ags as determined by decreased draining lymph node tissue mass, with reduced numbers of total leukocytes and Ag-specific CD4(+) T cells. There was also a decrease in formation and size of germinal centers in spleen and lymph nodes, accompanied by decreased levels of Ag-specific IgG in blood. Many of these effects were mimicked by an agonistic Ab-specific for the PS receptor. TGF-beta appears to play a critical role in this inhibition, as the inhibitory effects of PS were reversed by in vivo administration of anti-TGF-beta Ab. PS-containing liposomes did not appear to directly inhibit dendritic cell maturation in vitro in response to a variety of stimuli, nor did it prevent their migration to regional lymph nodes in vivo, suggesting that the inhibitory effects may have resulted from complicated interactions between tissue cells and dendritic cells, subsequently inhibiting their ability to productively activate T lymphocytes.  相似文献   

10.
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.  相似文献   

11.
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.  相似文献   

12.
The successful application of human gene therapy protocols on a broad clinical basis will depend on the availability of in vivo cell-type-specific gene delivery systems. We have developed retroviral vector particles, derived from spleen necrosis virus (SNV), that display the antigen binding site of an antibody on the viral surface. Using retroviral vectors derived from SNV that displayed single-chain antibodies (scAs) directed against a carcinoembryonic antigen-cross-reacting cell surface protein, we have shown that an efficient, cell-type-specific gene delivery can be obtained. In this study, we tested whether other scAs displayed on SNV vector particles can also lead to cell-type-specific gene delivery. We displayed the following scAs on the retroviral surface: one directed against the human cell surface antigen Her2neu, which belongs to the epidermal growth factor receptor family; one directed against the stem cell-specific antigen CD34; and one directed against the transferrin receptor, which is expressed on liver cells and various other tissues. We show that retroviral vectors displaying these scAs are competent for infection in human cells which express the antigen recognized by the scA. Infectivity was cell type specific, and titers above 105 CFU per ml of tissue culture supernatant medium were obtained. The density of the antigen on the target cell surface does not influence virus titers in vitro. Our data indicate that the SNV vector system is well suited for the development of a large variety of cell-type-specific targeting vectors.  相似文献   

13.
Apoptotic-cell clearance is dependent on several macrophage surface molecules, including CD14. Phosphatidylserine (PS) becomes externalised during apoptosis and participates in the clearance process through its ability to bind to a novel receptor, PS-R. CD14 has the proven ability to bind phospholipids and may function as an alternative receptor for the externalised PS of apoptotic cells. Here we demonstrate that CD14 does not function preferentially as a PS receptor in apoptotic-cell clearance. Compared with phosphatidylcholine and phosphatidylethanolamine, PS was the least active phospholipid binding to human monocyte-derived macrophages and showed no specificity for soluble or membrane-anchored CD14. Significantly, PS-containing liposomes failed to inhibit CD14-dependent uptake of apoptotic cells by macrophages. PS exposure was, however, found to be insufficient for either CD14-dependent or CD14-independent apoptotic-cell uptake by phagocytes. The additional features that enable apoptotic-cell clearance are derived from mechanisms that can be divorced temporally from those responsible for the morphological features of apoptosis.  相似文献   

14.
Although many methods are available for introducing genes into the mammalian germ line, none is ideal for genetic manipulation of livestock or primates. These organisms produce relatively few offspring in each reproductive cycle and they have long generation times. For these reasons, a recent report that adenovirus vectors can efficiently insert genes into the mouse germ line by embryo infection is of considerable interest. Adenovirus vectors have a high cloning capacity, can be produced in high titers, and can infect a wide variety of cell types. We have investigated in more detail the potential for such vectors to infect embryos and integrate their DNA into the genome. We exposed mouse embryos to adenovirus vectors that express bacterial beta-galactosidase (LacZ), and studied expression in the preimplantation period, toxicity of the vectors, and the frequency with which fetuses and pups integrate vector DNA. Our findings indicate that fully functional adenovirus receptor does not appear until the two-cell stage of development. Successful infection is associated with high toxicity, such that viral titers must be balanced to achieve high infection with tolerable levels of toxicity. Screening of 94 animals after embryo infection revealed a single positive polymerase chain reaction signal, which is indicative of the presence of the lacZ gene. This finding could not be confirmed by Southern blotting, which indicates that the founder animal was a genetic mosaic for the exogenous DNA. We conclude from these experiments that adenovirus gene transfer vectors are not readily usable for germ line gene insertion.  相似文献   

15.
Differences in resistance to infection with beet yellows virus (BYV) and beet mild yellowing virus (BMYV) have been observed in virus-tolerant sugar-beet breeding material. The results of glasshouse virus-susceptibility tests usually agreed well with those of field experiments in which plants were exposed to artificial, or natural, infestation with viruliferous aphids. Breeding lines and varieties, which showed resistance to BYV when Myzus persicae Sulz, was used as vector, generally showed a similar resistance to this virus when Aphis fabae Scop. was used. Varieties which were resistant to infection with one virus were not necessarily resistant to the other, although some showed resistance to both BYV and BMYV. Preliminary results suggest that resistance to infection may be controlled by recessive genes which occur widely in sugar-beet cultivars. The mechanism of this form of resistance is not understood, but it does not appear to be closely associated with resistance to the aphid vectors of the viruses. The observed differences in resistance to infection demonstrate the possibility of breeding a sugar-beet variety in which two forms of resistance to virus yellows, tolerance and resistance to infection, are combined.  相似文献   

16.
Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus associated with a contagious lung tumor of sheep, ovine pulmonary carcinoma. Other than sheep, JSRV is known to infect goats, but there is no evidence of human infection. Until now it has not been possible to study the host range for JSRV because of the inability to grow this virus in culture. Here we show that the JSRV envelope protein (Env) can be used to pseudotype Moloney murine leukemia virus (MoMLV)-based retrovirus vectors and that such vectors can transduce human cells in culture. We constructed hybrid retrovirus packaging cells that express the JSRV Env and the MoMLV Gag-Pol proteins and can produce JSRV-pseudotype vectors at titers of up to 10(6) alkaline phosphatase-positive focus-forming units/ml. Using this high-titer virus, we have studied the host range for JSRV, which includes sheep, human, monkey, bovine, dog, and rabbit cells but not mouse, rat, or hamster cells. Considering the inability of the JSRV-pseudotype vector to transduce hamster cells, we used the hamster cell line-based Stanford G3 panel of whole human genome radiation hybrids to phenotypically map the JSRV receptor (JVR) gene within the p21.3 region of human chromosome 3. JVR is likely a new retrovirus receptor, as none of the previously identified retrovirus receptors localizes to the same position. Several chemokine receptors that have been shown to serve as coreceptors for lentivirus infection are clustered in the same region of chromosome 3; however, careful examination shows that the JSRV receptor does not colocalize with any of these genes.  相似文献   

17.
The fusion of viruses with cells and liposomes is reviewed with focus on the analysis of the final extents and kinetics of fusion. Influenza virus and Sendai virus exhibit 100% of fusion capacity with cells at pH 5 and pH 7.5, respectively. On the other hand, there may be in certain cases, a limit on the number of virions that can fuse with a single cell, that is significantly below the limit on binding. It still remains to be resolved whether this limit reflects a limited number of possible fusion sites, or a saturation limit on the amount of viral glycoproteins that can be incorporated in the cellular membrane, like the case of virus fusion with pure phospholipid vesicles, in which the fusion products were shown to consist of a single virus and several liposomes. Both viruses demonstrate incomplete fusion activity towards liposomes of a variety of compositions. In the case of Sendai virus, fusion inactive virions bind essentially irreversibly to liposomes. Yet, preliminary results revealed that such bound, unfused virions can be released by sucrose gradient centrifugation. The separated unfused virions subsequently fuse when incubated with a "fresh" batch of liposomes. We conclude, therefore, that the fraction of initially bound unfused virions does not consist of dective particles, but rather of particles bound to liposomes via "inactive" sites. Details of the low pH inactivation of fusion capacity of influenza virus towards cells and liposomes are presented. This inactivation is caused by protonation and exposure of the hydrophobic segment of HA2, and affects primarily the fusion rate constants. Some degree of inactivation also occurs when virions are bound to cellular membranes.  相似文献   

18.
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.  相似文献   

19.
Liposomes of 400 nm in diameter can cross the 100-nm fenestrations in the endothelium of the hepatic sinusoid, provided they contain phosphatidylserine (PS) but not phosphatidylglycerol (PG) [Daemen et al. (1997) Hepatology 26, 416]. We present evidence indicating that (i) the PS effect does not involve a pharmacological action of this lipid on the size of the fenestrations, (ii) fluid-type but not solid-type PS liposomes have access to the hepatocytes and (iii) the lack of uptake of PG liposomes by hepatocytes is not due to a lack of affinity of the hepatocytes for PG surfaces. We conclude that the mechanism responsible for the uptake of large PS-containing liposomes by hepatocytes in vivo involves a mechanical deformation of these liposomes during their passage across the endothelial fenestrations.  相似文献   

20.
Xu W  Eiden MV 《Journal of virology》2011,85(7):3498-3506
BHK cells remain resistant to xenotropic murine retrovirus-related virus (XMRV) or gibbon ape leukemia virus (GALV) infection, even when their respective receptors, Xpr1 or PiT1, are expressed. We set out to determine the stage at which viral infection is blocked and whether this block is mediated by a dominant-negative factor or the absence of a requisite ancillary factor. BHK cells bind neither XMRV nor GALV envelope proteins. BHK cells expressing the appropriate receptors bind XMRV or GALV envelope proteins. BHK cells can be infected by NZB-XMV(New Zealand Black mouse xenotropic murine virus)-enveloped vectors, expressing an envelope derived from a xenotropic retrovirus that, like XMRV, employs Xpr1 as a receptor, and also by vectors bearing the envelope of 10A1 murine leukemia virus (MLV), a murine retrovirus that can use PiT1 as a receptor. The retroviral vectors used in these analyses differ solely in their viral envelope proteins, suggesting that the block to XMRV and GALV infection is mediated at the level of envelope-receptor interactions. N-linked glycosylation of the receptors was not found to mediate resistance of receptor-expressing BHK cells to GALV or XMRV, as shown by tunicamycin treatment and mutation of the specific glycosylation site of the PiT1 receptor. Hybrid cells produced by fusing BHKXpr1 or BHKPiT1 to XMRV- or GALV-resistant cells, respectively, can mediate efficient XMRV or GALV infection. These findings indicate that BHK cells lack a factor that is required for infection by primate xenotropic viruses. This factor is not required for viruses that use the same receptors but were directly isolated from mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号