首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
PCR technique is used to amplify the mature peptide gene of human transforming growth factor pl (hTGFβ1); the gene is verified by full-length sequence analysis. In DHSa/pBV220 expression system, hTGFβ1 attains expression in the cytoplasm ofE. coli up to 16%. The recombinant protein is proved to be the monomer of hTGFPl by N-terminal amino acids analysis and immunoblotting. After refolding of the monomer proteinin vitm in glutathione system or CHPAS/DMSO system, the dimeric protein accumulates to 30% in the refolding mixture. The recombinant protein is purified to homogeneity on silver staining, and is shown to have strong biological activity from MTT bioassay on MvlLu cells.  相似文献   

2.
1,3-1,4-β-d-glucanase is an important endoglycosidase in the brewing and animal feed industries. To achieve high-level expression of recombinant glucanase in Pichia pastoris, we designed sequences encoding the α-factor signal peptide from Saccharomyces cerevisiae and the truncated 1,3-1,4-β-d-glucanase from Fibrobacter succinogenes as a whole. The codons encoding the 52 amino acids of the signal peptide and 106 residues of the glucanase protein were optimized for expression in P. pastoris; 189 nucleotides were changed. The G + C content was adjusted to 48–49%, and AT-rich stretches were eliminated to avoid premature termination. The messenger ribonucleic acid secondary structure near the AUG start codon was also adjusted to ensure efficient translation; the resulting glucanase production was twofold higher compared with that achieved with gene structure optimization alone. We also propose a new fermentation strategy for the induction phase, in which 5/95% glycerol/methanol mixed feed was used in days 1–3 and 100% methanol was used on days 4–6. By comparison with methanol feed and glycerol/methanol-mixed feed alone, the yield of recombinant glucanase increased by 38.5 and 16.5%, respectively. The expressed optimized recombinant 1,3-1,4-β-d-glucanase constituted ~90% of the total secreted protein, reaching up to 3 g l−1 in the medium.  相似文献   

3.
Studies were conducted to characterize the effect of gene amplification and foreign gene expression on recombinant CHO cell growth. Chinese hamster ovary (CHO) cells were transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the gene for human β-interferon (β-IFN) or thelac Z gene which codes for β-galactosidase (β-gal). The recombinant genes in these CHO cells were amplified stepwise by growth in 0, 10−7, and 10−6 M methotrexate (MTX), and the β-gal expressing cells were adapted to suspension culture. Flow cytometric methods (FCM) were used to measure the distribution of amplifieddhfr gene content and foreign β-gal gene expression in the cell populations. A biochemical assay for β-gal was also used. Beta-gal expression was found to increase with increasing gene amplification. The growth rate of recombinant CHO cells at 10−7 M MTX was found to be 20% lower than that of recombinant CHO cells in MTX-free medium, and the cell growth rate at 10−6 M MTX was 20% lower than that of recombinant CHO cells at 10−7 M MTX. There was no effect of 10−5 M MTX on the growth of CHO-DG44 (dhfr-) cells. The reduction of growth rate in recombinant CHO cells is therefore thought to be mainly due to the effect ofdhfr and foreign gene amplification and increased β-galactosidase expression.  相似文献   

4.
Transforming growth factor-βs (TGF-βs) are multi functional growth modulators implicated in several physiological processes which include embryogenesis, inflammation, immune-suppression, wound healing, carcinogenesis and cellular differentiation. For clinical use, recombinant expression of TGF-βs is the only practical source because of very low yields from natural sources. Here, we report the recombinant expression of human TGF-βl and TGF-β2 in a mammalian expression system using a high expression eukaryotic vector driven by a cytomegalovirus promoter. Expression levels are as high as 0.97 μg/ml of TGF-βl and 0.24 μg/ml of TGF-β2 in conditioned media, sufficient for purification without the need for amplification of the gene using methotrexate.  相似文献   

5.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

6.
β-1,3-1,4-glucanase (EC3.2.1.73) as an important industrial enzyme has been widely used in the brewing and animal feed additive industry. To improve expression efficiency of recombinant β-1,3-1,4-glucanase from Bacillus licheniformis EGW039(CGMCC 0635) in methylotrophic yeast Pichia pastoris GS115, the DNA sequence encoding β-1,3-1,4-glucanase was designed and synthesized based on the codon bias of P. pastoris, the codons encoding 96 amino acids were optimized, in which a total of 102 nucleotides were changed, the G+C ratio was simultaneously increased from 43.6 to 45.5%. At shaking flask level, β-1,3-1,4-glucanase activity is 67.9 and 52.3 U ml−1 with barley β-glucan and lichenan as substrate, respectively. At laboratory fermentor level, the secreted protein concentration is approximately 250 mg l−1. The β-1,3-1,4-glucanase activity is 333.7 and 256.7 U ml−1 with barley β-glucan and lichenan as substrate, respectively; however, no activity of this enzyme on cellulose is observed. Compared to the nonoptimized control, expression level of the optimized β-1,3-1,4-glucanase based on preferred codons in P. pastoris shown a 10-fold higher level. The codon-optimized enzyme was approximately 53.8% of the total secreted protein. The optimal acidity and temperature of this recombinant enzyme were pH 6.0 and 45°C, respectively.  相似文献   

7.
By using a β-glucanase from Bacillus as a model protein, we investigated whether the secretion competence based on the action of the kil gene can be improved using stronger promoters for the expression of the kil gene. Since the production of extracellular target proteins also depends on the promoter strengths of the target gene, we constructed four expression vectors with all possible combinations of a weak and a strong stationary-phase promoter for the kil gene, and a weak and a strong constitutive promoter, respectively, for the β-glucanase gene. The results of batch fermentations showed that the use of stronger promoters generally decreased the cell density. However, a drastic increase of productivity of the cells to produce and secrete β-glucanase resulted in a significantly higher activity of extracellular β-glucanase. The yield of extracellular β-glucanase can be increased (to 168 %) by using a strong promoter for the β-glucanase alone. However, the increase was much higher when the weak promoter of the kil gene was replaced by a strong stationary-phase promoter (to 221 %). An even higher yield of extracellular β-glucanase was reached when β-glucanase was expressed by a strong promoter in addition indicating a combinatorial effect. This shows that the extracellular production of a recombinant target gene can be optimized by tuning the promoter strengths of components, the kil gene and the target gene.  相似文献   

8.
Summary A new cell line (Hep 3B-TR), which is resistant to growth-inhibition by transforming growth factor beta 1 (TGF-β1) up to 10 ng/ml (400 pM), was isolated from parental Hep 3B human hepatoma cells, which are sensitive to growth-inhibition by TGF-β1. In the presence of TGF-β1 (1 to 10 ng/ml), the growth of the parental cell line (Hep 3B-TS) was inhibited by more than 95%. Under the same conditions, the growth rate of the resistant clone (Hep 3B-TR) however, was identical in the presence or absence of TGF-β1 and was almost the same as that of the Hep 3B-TS cells in the absence of TGF-β1. Affinity crosslinking with 5 pM 125I-labeled TGF-β1 showed that the TGF-β1 receptors type I (TGF-βRI) and type II (TGF-βRII) were not present on the cell surface of the Hep 3B-TR cells, whereas they were present on the sensitive HEP 3B-TS cells. Hep 3B-TS cells had detectable TGF-βRII mRNA, which was not found in Hep 3B-TR cells. RNA analysis showed different effects on the expression of TGF-β1, c-fos, c-myc, and protein disulfide isomerase (PDI) genes in the two cell lines in response to TGF-β1 protein. Addition of TGF-β1 (1 ng/ml) strongly increased the expression of TGF-β1 mRNA in Hep 3B-TS cells, but not in Hep 3B-TR cells. In Hep 3B-TS cells, c-fos mRNA was not detected either in the presence or absence of TGF-β1 protein. However, abundant c-fos mRNA was detected in Hep 3B-TR cells, which was not altered by TGF-β1 protein. TGF-β1 protein inhibited the expression of c-myc and PDI mRNAs in Hep 3B-TS cells, whereas although the c-myc and PDI mRNAs were much more abundant in Hep 3B-TR cells, their expression was not affected by TGF-β1 protein. These results suggest that the mechanisms of escape from growth-inhibition by TGF-β1 in Hep 3B-TR hepatoma cells probably involve loss of binding by TGF-β1 to its cell surface receptors.  相似文献   

9.
Endo-β-glucanase II (EG II) gene cDNA was isolated from the fungus Humicola insolens H31-3 by RT-PCR. It was cloned into the expression vector pGAPZαA. The resultant recombinant plasmid was introduced into Pichia pastoris GS115 by electroporation after being linearized by BspHI digestion. The recombinant Pichia pastoris strain was obtained and SDS-PAGE showed that the molecular weight of the expression protein was about 55 kD.The cultivation condition and the characteristics of the recombinant EG II were also explored. __________ Translated from Microbiology, 2006, 33(6): 68273 [译自: 微生物学 通报]  相似文献   

10.
Summary A refolding strategy was described for on-column refolding of recombinant human interferon-γ (rhIFN-γ) inclusion bodies by ion-exchange chromatography (IEC). The rhIFN-γ was expressed in E. colias inclusion bodies. Triton X-100 was used first to wash the rhIFN-γ inclusion bodies before chromatographic refolding. The refolding process was performed by gradually decreasing the concentration of urea in the column after the denatured rhIFN-γ protein had bound onto the ion-exchange gel SP-Sepharose Fast Flow. The refolding and purification process for the denatured rhIFN-γ was carried through simultaneously and the purity of the refolded rhIFN-γ was up to 95%. The effects of protein loading, flow rate, urea gradient length and final urea concentration on the refolding were investigated in detail. Under the optimum conditions, the specific activity of rhIFN-γ was up to 7.5 × 105 IU mg−1and active protein recovery was up to 54%.  相似文献   

11.
The particle gun, cocultivation withAgrobacterium tumefaciens, and imbibition in DNA solutions were compared as methods to transfer DNA into mature and immature pollen ofNicotiana tabacum. Bombardment of mature pollen with the β-glucuronidase gene cloned behind the pollen-specific PA2 promoter of the chalcone isomerase gene ofPetunia hybrida resulted in the expression of the β-glucuronidase gene in 0.025% of the pollen grains. Bombardment of younger stages followed byin vitro maturation also resulted in the formation of mature pollen that expressed β-glucuronidase, although at a lower frequency. Cocultivation of pollen duringin vitro maturation orin vitro germination withAgrobacterium tumefaciens did not yeild β-glucuronidase-expressing pollen. In these cases, an intron-containing β-glucuronidase gene was used which effectively prevented β-glucuronidase expression in the bacteria. Imbibition of mature, dry pollen in various DNA solutions of the same constructs also did not lead to the formation of β-glucuronidase expressing pollen.  相似文献   

12.
The particle gun approach was used for the quantification of promoter efficiency in a test system for transient gene expression. β-Glucuronidase was used as reporter gene for determining promotote strength. The variability inherent in this gene transfer system was considerably reduced by calculating a transformation efficiency factor given by the expression of a cotransferred second reporter gene (firefly luciferase). The calibration of β-glucuronidase activity by the transformation efficiency factor caused a lower statistical variance of the values and allowed reliable results to be obtained with a smaller set of repetitions. The CaMV 35S promoter (as a control) and the monocot-specific promoters for maize polyubiquitin1, rice actin 1 and the maize-derivedEmu were characterized and compared with respect to expression strength, as tested under identical conditions in suspension cell cultures of maize, barley and tobacco. Compared to the 35S promoter, the monocot-specific promoters show up to 15-fold higher expression in maize and barley but give only weak expression in tobacco. No expression was found for the rice actin 1 promoter in tobacco. The level of reporter gene expression is influenced by the osmotic potential in the agar medium. For theEmu promoter, the calibrated β-glucuronidase activities remained mearly constant at low sucrose concentrations. Above 8% sucrose, the calibrated activities increased steadily with increasing osmotic conditions, reaching a three-to four-fold higher level at the highest sucrose concentration (32%) as compared to the standard concentration (4% sucrose) in the medium.  相似文献   

13.
He MX  Feng H  Zhang YZ 《Biotechnology letters》2008,30(12):2111-2117
A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed β-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant β-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.  相似文献   

14.
Yuan T  Yang P  Wang Y  Meng K  Luo H  Zhang W  Wu N  Fan Y  Yao B 《Biotechnology letters》2008,30(2):343-348
A genomic DNA library screen yielded the nucleotide sequence of a 12 kb fragment containing a gene (2067 bp) coding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius ATCC 27009. The β-galactosidase gene was expressed in Pichia pastoris, and up to 90 mg recombinant β-galactosidase/l accumulated in shake flask cultures. Using o-nitrophenyl-β-d-galactopyranoside as a substrate, the optimum pH and temperature of the purified recombinant β-galactosidase were 5.8–6.0 and 70°C, respectively. The enzyme retained 90% of its activity when heated at 70°C for 30 min. Approximately 48% of lactose in milk was hydrolyzed following treatment with the recombinant enzyme over 60 min at 65°C.  相似文献   

15.
16.
β-1,3-1,4-Glucanase has been applied in the brewing and animal feed additive industry. It can effectively improve digestibility of barley-based diets and reduce enteritis. It also reduces viscosity during mashing for high-quality brewers malt. The aim of this work is to clone β-1,3-1,4-glucanase-encoding gene and express it heterogeneously. The gene was amplified by polymerase chain reaction using Bacillus licheniformis genomic DNA as the template and ligated into the expression vector pET28a. The recombinant vector was transformed into Escherichia coli. The estimated molecular weight of the recombinant enzyme with a six-His tag at the N terminus was about 28 kDa, and its activities in cell lysate supernatant were 1,286 and 986 U ml−1 for 1% (w/v) barley β-glucan and 1% (w/v) lichenan, respectively. Accordingly, the specific activities were 2,479 and 1,906 U mg−1 for these two substrates. The expression level of recombinant β-1,3-1,4-glucanase was about 60.9% of the total protein and about 12.5% of the total soluble protein in crude cell lysate supernatant. Acidity and temperature optimal for this recombinant enzyme was pH 5.6 and 40°C, respectively.  相似文献   

17.
18.
19.
The gene for a thermostable β-agarase from Agarivorans sp. JA-1 was cloned and sequenced. It comprised an open reading frame of 2,988 base pairs, which encode a protein of 109,450 daltons consisting of 995 amino acid residues. A comparison of the entire sequence showed that the enzyme has 98.8% sequence similarities to β-agarase from Vibrio sp. JT1070, indicating that it belongs to the family glycoside hydrolase (GH)-50. The gene corresponding to a mature protein of 976 amino acids was inserted and expressed in Escherichia coli. The recombinant β-agarase was purified to homogeneity. It had maximal activity at 40°C and pH 8.0 in the presence of 1 mM NaCl and 1 mM CaCl2. The enzyme hydrolyzed agarose as well as neoagarohexaose and neoagarotetraose to yield neoagarobiose as the main product. Thus, the enzyme would be useful for the industrial production of neoagarobiose.  相似文献   

20.
We have previously shown that protein kinase A of the medically important zygomycete Mucor rouxii participates in fungal morphology through cytoskeletal organization. As a first step towards finding the link between protein kinase A and cytoskeletal organization we here demonstrate the cloning of the Rho1 gene and the characterization of its protein product. The RHO1 protein primary sequence shows 70–85% identity with fungal RHO1 or mammalian RhoA. Two protein kinase A phosphorylation sequences in adequate context are predicted, Ser73 and Ser135. The peptide IRRNSQKFV, containing Ser135 proved to be a good substrate for M. rouxii protein kinase A catalytic subunit. The over-expressed Rho1 fully complements a Saccharomyces cerevisiae null mutant. The endogenous protein was identified by western blot against a developed antibody and by ADP-ribosylation. Localization in germlings was visualized by immunofluorescence; the protein was localized in patches in the mother cell surface and excluded from the germ tube. Measurement of Rho1 expression during germination indicates that Rho1, at both the mRNA and protein levels, correlates with differentiation and not with growth. Rho1 has been shown to be the regulatory protein of the β-1,3-glucan synthase complex in fungi in which β-1,3-glucans are major components of the cell wall. Even though glucans have not been detected in zygomycetes, caspofungin, an echinochandin known to be an inhibitor of β-1,3-glucan synthase complex, is shown here to have a negative effect on growth and to produce an alteration on morphology when added to M. rouxii growth culture medium. This result has an important impact on the possible participation of β-1,3-glucans on the regulation of morphology of zygomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号