首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA expression cloning is a powerful method for the rescue and identification of genes that are able to confer a readily identifiable phenotype on specific cell types. Retroviral vectors provide several advantages over DNA-mediated gene transfer for the introduction of expression libraries into eukaryotic cells since they can be used to express genes in a wide range of cell types, including those that form important experimental systems such as the hemopoietic system. We describe here a straightforward and efficient method for generating expression libraries by using a murine retroviral vector. Essentially, the method involves the directional cloning of cDNA into the retroviral vector and the generation of pools of stable ecotropic virus producing cells from this DNA. The cells so derived constitute the library, and the virus they yield is used to infect appropriate target cells for subsequent functional screening. We have demonstrated the feasibility of this procedure by constructing several large retroviral libraries (10(5) to 10(6) individual clones) and then using one of these libraries to isolate cDNAs for interleukin-3 and granulocyte-macrophage colony-stimulating factor on the basis of the ability of these factors to confer autonomous growth on the factor-dependent hemopoietic cell line FDC-P1. Moreover, the frequency at which these factor-independent clones were isolated approximated the frequency at which they were represented in the original plasmid library. These results suggest that expression cloning with retroviruses is a practical and efficient procedure and should be a valuable method for the isolation of important regulatory genes.  相似文献   

2.
Retroviral vector-mediated gene transfer has been central to the development of gene therapy. Retroviruses have several distinct advantages over other vectors, especially when permanent gene transfer is the preferred outcome. The most important advantage that retroviral vectors offer is their ability to transform their single stranded RNA genome into a double stranded DNA molecule that stably integrates into the target cell genome. This means that retroviral vectors can be used to permanently modify the host cell nuclear genome. Recently, retroviral vector-mediated gene transfer, as well as the broader gene therapy field, has been re-invigorated with the development of a new class of retroviral vectors which are derived from lentiviruses. These have the unique ability amongst retroviruses of being able to infect non-cycling cells. Vectors derived from lentiviruses have provided a quantum leap in technology and seemingly offer the means to achieve significant levels of gene transfer in vivo.  相似文献   

3.
4.
Retroviral vectors were used to introduce an activated ras gene into murine pluripotent hemopoietic stem cells. We attempted to reconstitute the hemopoietic system of lethally irradiated mice with isolated spleen colonies obtained in vivo after injection of infected bone marrow cells. Spleen colonies derived from infected bone marrow were inefficient in promoting long-term survival of irradiated hosts. This loss of reconstitutive capacity of spleen colonies was not due to the retroviral infection per se but to the in vitro culture of spleen colony precursors. Incubation for 24 h in the presence of fetal calf serum and interleukin-3 without virus-producing cells was sufficient to abolish completely the reconstitutive capacity of spleen colonies while maintaining both self-renewal and pluripotential capacities of spleen colony precursors. These results show that the in vitro manipulation of stem cells that is included in current protocols for retroviral infection can modify the developmental potential of these cells. This finding clearly indicates that the use of retroviral vectors can introduce a bias in the analysis of hemopoiesis.  相似文献   

5.
PURPOSE OF REVIEW: Atherosclerosis is a chronic inflammatory disease that is the primary cause of morbidity and mortality in the developed world. Many studies have shown that macrophages and T-cells play critical roles in multiple aspects of the pathogenesis of the disease. Given that these cells are ultimately derived from bone marrow precursors, the concept of performing gene therapy for atherosclerosis through the retroviral transduction of hematopoietic stem cells has received much attention. This review will highlight recent advances that will help bring this goal closer. RECENT FINDINGS: The clinical application of retroviral gene transfer into hematopoietic stem cells has been hampered, in part, by the absence of vectors that can direct long-lasting, cell-type specific gene expression. In this review we will detail recent developments in the design of novel retroviral and lentiviral vectors that appear to overcome these problems, offering approaches to express therapeutic genes in specific cell-types within atherosclerotic lesions. We will also highlight advances in our understanding of the pathogenesis of atherosclerosis that may offer new gene therapeutic targets. SUMMARY: The use of retroviral transduction of hematopoietic stem cells for treatment of patients with atherosclerosis still remains a long-term goal. However, the recent development of retroviral vectors capable of directing expression to specific cell types within the lesion will allow more targeted therapeutic strategies to be devised. In addition, these vectors will provide powerful experimental tools to further our understanding of the pathogenesis of the disease.  相似文献   

6.
Retroviral-mediated gene transfer in primary murine and human T-lymphocytes   总被引:1,自引:0,他引:1  
Recombinant retroviruses are efficient vectors for introducing genes into many mammalian cell types. They are useful in the context of clinical as well as experimental applications, owing to the ability to generate high-titer and helper-free viral stocks. Retroviral vectors are especially appropriate for the transduction of primary lymphocytes, because gene transfer is stable and mediated by nonimmunogenic vectors. Stable integration in chromosomes of cells undergoing clonal expansion ensures that the foreign genetic material will be faithfully transmitted to the cells’ progeny. However, oncoretroviral vectors derived from murine leukemia viruses (MLV) require target cell division to integrate. Here we review factors that determine retroviral modiated gene transfer efficiency in primary T-lymphocytes, in particular T cell activation status, viral receptor expression, and culture conditions.  相似文献   

7.
B Y Wong  H Chen  S W Chung    P M Wong 《Journal of virology》1994,68(9):5523-5531
Retroviral gene transfer efficiently delivers genes of interest stably into target cells, and expression cDNA cloning has been shown to be highly successful. Considering these two advantages, we now report a method by which one can identify genes stimulating cell growth through functional analysis. The first step requires the construction of a retroviral cDNA expression library and the optimization of transfection of vector DNA into virus packaging cells. The second step involves the cocultivation of target cells with libraries of retrovirus-producing cells, resulting in the amplification of target cells transduced with a gene(s) stimulating cell growth. Under standardized conditions of transfection, we detected an average of 4,000 independent clones per dish, among which expression of a retroviral beta-galactosidase gene at an abundance of 0.2% could be detected. Next, we demonstrated the augmentation of the sensitivity of the assay by retroviral infection and functional analysis. We did this by cocultivating factor-dependent (FD) cells with dishes of GP/E cells transfected with plasmids containing various molar ratios of pN2-IL3 DNA and retroviral library cDNA and by determining the highest dilution of pN2-IL3 which still resulted in the conversion of FD cells to factor independence. The retroviral interleukin-3 gene at an abundance as low as 0.001% could be detected. Indeed, we were able to detect from FD cells the development of factor-independent colonies with different phenotypes after retroviral transfer of cDNAs from an immortalized hemopoietic stem cell line. Thus, the combination of a standardized high-efficiency DNA transfection and retrovirus-mediated gene transfer should facilitate the identification of genes capable of conferring to target FD cells a detectable new function or phenotype. By scaling up the size of the experiment realistically during screening, the assay can detect cDNA at an abundance of lower than 0.0001%.  相似文献   

8.
9.
BACKGROUND: Early clinical trials for gene therapy of human gliomas with retroviral packaging cells (PC) have been hampered by low transduction efficacy and lack of dissemination of PC within the tumor. In the current approach, these issues have been addressed by creating a stable packaging cell line for retroviral vectors pseudotyped with glycoproteins of lymphocytic choriomeningitis virus (LCMV) based on tumor-infiltrating progenitor cells. METHODS: Tumor-infiltrating progenitor cells, which had been isolated from adult rat bone marrow (BM-TIC), were modified to stably express Gag-Pol proteins of moloney murine leukemia virus (Mo-MLV) and glycoproteins of LCMV. Packaging of a retroviral vector was measured by titration experiments on human fibroblast cells as well as on mouse and human glioma cell lines. Additionally, gene transfer was tested in a rat glioma model in vivo. RESULTS: The BM-TIC-derived packaging cell line (BM-TIPC) produced retroviral vectors with titers between 2-8 x 10(3) transducing units (TU)/ml. Extended culturing of BM-TIPC over several weeks and freezing/thawing of cells did not affect vector titers. No replication-competent retrovirus was released from BM-TIPC. In a rat glioma model, BM-TIPC infiltrated the tumors extensively and with high specificity. Moreover, BM-TIPC mediated transduction of glioma cells in vivo. CONCLUSION: This proof-of-principle study shows that primary adult progenitor cells with tumor-infiltrating capacity can be genetically modified to stably produce retroviral LCMV pseudotype vectors. These BM-TIPC may be a useful tool to enhance specificity and efficacy of gene transfer to gliomas in patients.  相似文献   

10.
11.
Recombinant retroviral vectors producing multicistronic mRNAs were constructed. Picornavirus putative internal ribosome entry sites (IRES) were used to confer cap-independent translation of an internal cistron. Internal cistrons were engineered by ligation of various lengths of the IRES of encephalomyocarditis (EMC) virus or polio virus to the E. coli chloramphenicol acetyltransferase (CAT) gene. The IRES/CAT fusions were introduced into retroviral vectors 3' to the translation stop codon of the neomycin phosphotransferase (NEO) gene, and the molecular constructs transfected into retroviral vector packaging lines. Retroviral vector producer cells efficiently express the internal CAT gene product only when the full length IRES is used. Both the EMC/CAT and polio/CAT retroviral vectors produced high titer vector supernatant capable of productive transduction of target cells. To test the generality of this gene transfer system, a retroviral vector containing an IRES fusion to the human adenosine deaminase (ADA) gene was constructed. Producer cell supernatant was used to transduce NIH/3T3 cells, and transduced cells were shown to express NEO, and ADA. Novel three-gene-containing retroviral vectors were constructed by introducing the EMC/ADA fusion into either an existing internal-promoter-containing vector, or a polio/CAT bicistronic vector. Producer cell clones of the three-gene vectors synthesize all three gene products, were of high titer, and could productively transduce NIH/3T3 cells. By utilizing cap-independent translation units, IRES vectors can produce polycistronic mRNAs which enhance the ability of retroviral-mediated gene transfer to engineer cells to produce multiple foreign proteins.  相似文献   

12.
de Felipe P  Izquierdo M  Wandosell F  Lim F 《BioTechniques》2001,31(2):394-402, 404-5
Retroviral vectors have long been used in a wide variety of gene transfer applications but have certain drawbacks, such as small cargo size, limited tropism, and low titers. HSV expression vectors overcome these disadvantages, but, because they persist in target cells as nonreplicative episomes, they are not retained in all the progeny of dividing cells. Chimeric HSV/AAV products that can mediate transgene integration in human mitotic cells have been constructed, but, to date, genetic modification of dividing cells in animal models using HSV products has not been possible. Here, we report the construction of hybrid HSV/retroviral vectors that exhibit up to 50-fold higher transgene integration efficiency compared to vectors containing only HSV-1 components. Efficient integration of a retroviral transgene cassette encoding pac in human cells required expression of the Moloney murine leukemia virus gag-pol genes, but in murine cells, could also be mediated by endogenous activities, albeit at a lower level. Gene delivery was equally efficient in BHK21, a cell line resistant to retroviral infection, and transgene retention and expression were observed to be stable for least one month in Hs683 human glioma cells. These vectors have wide applications for the genetic modification of many cell types.  相似文献   

13.
Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic arenavirus shown to infect a broad range of different cell types. Here, we combined the beneficial characteristics of the LCMV glycoprotein (LCMV-GP) and those of retroviral vectors to generate a new, safe, and efficient gene transfer system. These LCMV-GP pseudotypes were systematically compared with vectors containing the widely used amphotropic murine leukemia virus envelope (A-MLVenv) or the vesicular stomatitis virus G protein (VSV-G). Production of LCMV-GP-pseudotyped oncoretroviral and lentiviral vectors by transient transfection resulted in vector titers similar to those with A-MLVenv or VSV-G. In contrast to A-MLVenv particles, LCMV-GP pseudotypes could be efficiently concentrated by ultracentrifugation without loss of vector titer. Unlike the cell-toxic VSV-G, a stable retroviral packaging cell line constitutively expressing LCMV-GP could be established. Vectors pseudotyped with LCMV-GP efficiently transduced many cell lines from different species and tissues relevant for gene therapy. Transduction of human glioma cells was studied in detail. These cells are a major target for cancer gene therapy and were transduced more efficiently with LCMV-GP-pseudotyped vectors than with the generally used A-MLVenv particles. The high stability, low toxicity, and broad host range make LCMV-GP-pseudotyped vectors attractive for gene transfer applications. The recombinant LCMV-GP-pseudotyped vectors will also allow functional characterization of naturally occurring and recombinant LCMV-GP variants.  相似文献   

14.
Gene therapy is a novel approach for treating various congenital and acquired genetic disorders, including cancer, heart disease, and acquired immune deficiency syndrome. Amongst possible gene delivery systems, retroviral vector mediated gene transfer has been the most extensively studied and has been approved for use in over 40 current Phase I/II clinical trials for the treatment of various disorders, primarily cancers. Recent technological improvements include the optimization of vector production by concentration and lyophilization, resulting in high titers of vectors, as well as the large-scale production of vector-produced cells for the treatment of brain cancer. Present clinical protocols require specialized care centers with expertise in molecular biology and cell transplantation. Considerable effort is under way to develop retroviral vectors that can be both injected directly into the body and targeted to specific cell types within the body. Such vectors could be administered to patients by physicians in their offices. Successful development of this new technology would greatly expand the clinical potential of gene therapy.  相似文献   

15.
Retroviral vectors have become an important tool for gene transfer in vitro and in vivo. Classical Moloney murine leukemia virus (MLV) based retroviral vectors have been used for over 20 years to transfer genes into dividing cells. Cell lines for production of retroviral vectors have become commonly available and modifications in retroviral vector design and use of envelope proteins have made the production of high titer, helper-free, infectious virus stocks relatively easy. More recently, lentiviral vectors, another class of retroviruses, have been modified for in vitro and in vivo gene transfer. The ability of lentiviral vectors to transduce non-dividing cells has made them especially attractive for in vivo gene transfer into differentiated, non-dividing tissues. Several improvements in helper plasmids and vectors have made lentivirus a safe vector system for ex vivo and in vivo gene transfer. This review will briefly summarize the background of these vector systems and provide some common protocols available for the preparation of MLV based retroviral vectors and HIV-1 based lentiviral vectors.  相似文献   

16.
Replication-incompetent recombinant retroviruses are currently used for gene delivery. The limited efficiency of gene transfer using these vectors hampers implementation of gene therapy. Successful integration of Moloney murine leukemia virus (MMuLV)-derived retroviral vectors into the host cell DNA requires cell division. The time difference between virus entry and cell division is variable and prolonged in slowly dividing cells. Therefore, the rate of intracellular decay of internalized vectors between the time of entry into the target cell and cell division may limit the probability of successful integration following viral entry. We present two methods that measure the intracellular stability of MMuLV-derived retroviral vectors in NIH 3T3 cells. The first is based on a temporary interruption of cell cycle progression by using cell detachment. This method provides an estimate, but not a direct measurement, of the half-life. The results show that the MMuLV intracellular half-life is on the order of but shorter than the total cell cycle time. The second method allows the direct measurement of the intracellular half-life by using two cell cycle-specific labels: 5-bromodeoxyuridine, a thymidine analog that labels cells in S-phase; and the viral vector that labels cells in mitosis. By varying the time between the administration of the two labels, the intracellular half-life is measured to be in the range of 5.5 to 7.5 h. Such a short intracellular half-life may restrict the efficiency of gene transfer by retroviral vectors, particularly in slowly dividing target cells.  相似文献   

17.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

18.
19.
Vectors for gene transfer and gene therapy were developed which combine the advantages of the integrase and recombinase systems. This was achieved by inserting two loxP sites for specific DNA excision into an MESV based retroviral vector. We show that this 'retroviral lox system' allows the infection of cells and the expression of transferred genes. In addition, we constructed an efficient retrovirus-based expression system for a modified Cre recombinase. Functional tests for DNA excision from integrated retroviral lox vectors were performed by the use of a negative selectable marker gene (thymidine kinase). Cre expression in cells infected with retroviral lox vectors and subsequent BrdU selection for cells in which site-specific recombination has occurred results in large numbers of independent cell clones. These results were confirmed by detailed molecular analysis. In addition we developed retroviral suicide vectors in which the enhancer/promoter elements of both LTRs were replaced by lox sequences. We show that lox-sequences located in the LTRs of retroviral vectors are stable during retroviral replication. Potential applications of this system would be the establishment of revertants of retrovirus-infected cells by controlled excision of nearly the complete proviral DNA.  相似文献   

20.
Retrovirus vectors can be made in the absence of helper virus by using retrovirus packaging cell lines. Helper-free virus is critical for a variety of gene transfer studies. The most useful packaging cell lines contain helper virus DNA from which the signal required for packaging of the viral RNA genome into virions has been deleted. However, we showed that the ability to package virus is conferred at very low frequency to cells infected with virus from these packaging cell lines, presumably by low-frequency transmission of the deleted virus genome. In addition, these packaging cell lines can interact with some retroviral vectors to yield replication-competent virus. We constructed packaging cell lines containing helper virus DNA that had several alterations in addition to deletion of the packaging signal. The new packaging cells retained the useful features of previously available lines but did not yield helper virus after introduction of any of the vectors tested, and transfer of the packaging function was not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号