首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This commentary discusses the recent reports in RNA by Yan and colleagues and Westman and colleagues of the apparent failure of ribavirin to bind to recombinant eIF4E and inhibit 7-methyl guanosine cap-dependent exogenous mRNA translation of cell extracts in vitro. Measuring binding by using affinity chromatography of matrix-immobilized proteins and by using protein emission fluorescence spectroscopy in the presence of nucleotide ligands, as well as limitations of using cell extracts for the assessment of mechanisms of mRNA translation are discussed. Possible reasons for the discordant findings of Yan and colleagues and Westman and colleagues are suggested, and direct observation of the specific binding of ribavirin to eIF4E by using mass spectrometry is presented.  相似文献   

2.
3.
Mutations in the eIF4E homolog encoded at the pvr1 locus in Capsicum result in broad-spectrum potyvirus resistance attributed to the pvr1 resistance allele, a gene widely deployed in agriculture for more than 50 years. We show that two other resistance genes, previously known to be eIF4E with narrower resistance spectra, pvr2(1) and pvr2(2), are alleles at the pvr1 locus. Based on these data and current nomenclature guidelines, we have re-designated these alleles, pvr1(1) and pvr1(2), respectively. Point mutations in pvr1, pvr1(1), and pvr1(2) grouped to similar regions of eIF4E and were predicted by protein homology models to cause conformational shifts in the encoded proteins. The avirulence determinant in this potyvirus system has previously been identified as VPg, therefore yeast two-hybrid and GST pull-down assays were carried out with proteins encoded by the pvr1 alleles and VPg from two different strains of Tobacco etch virus (TEV) that differentially infected Capsicum lines carrying these genes. While the protein encoded by the susceptible allele pvr1+ interacted strongly, proteins translated from all three resistance alleles (pvr1, pvr1(1), and pvr1(2)) failed to bind VPg from either strain of TEV. This failure to bind correlated with resistance or reduced susceptibility, suggesting that interruption of the interaction between VPg and this eIF4E paralog may be necessary, but is not sufficient for potyvirus resistance in vivo. Among the three resistance alleles, only the pvr1 gene product failed to bind m7-GTP cap-analog columns, suggesting that disrupted cap binding is not required for potyvirus resistance.  相似文献   

4.
Several cytoplasmic polyadenylation element (CPE)-containing mRNAs that are repressed in Xenopus oocytes become active during meiotic maturation. A group of factors that are anchored to the CPE are responsible for this repression and activation. Two of the most important are CPEB, which binds directly to the CPE, and Maskin, which associates with CPEB. In oocytes, Maskin also binds eukaryotic translation initiation factor 4E (eIF4E), an interaction that excludes eIF4G and prevents formation of the eIF4F initiation complex. When the oocytes are stimulated to reenter the meiotic divisions (maturation), CPEB promotes cytoplasmic polyadenylation. The newly elongated poly(A) tail becomes bound by poly(A) binding protein (PABP), which in turn binds eIF4G and helps it displace Maskin from eIF4E, thereby inducing translation. Here we show that Maskin undergoes several phosphorylation events during oocyte maturation, some of which are important for its dissociation from eIF4E and translational activation of CPE-containing mRNA. These sites are T58, S152, S311, S343, S453, and S638 and are phosphorylated by cdk1. Mutation of these sites to alanine alleviates the cdk1-induced dissociation of Maskin from eIF4E. Prior to maturation, Maskin is phosphorylated on S626 by protein kinase A. While this modification has no detectable effect on translation during oocyte maturation, it is critical for this protein to localize on the mitotic apparatus in somatic cells. These results show that Maskin activity and localization is controlled by differential phosphorylation.  相似文献   

5.
6.
The poly(ADP-ribose) polymerase tankyrase was originally described as a telomeric protein whose catalytic activity was proposed to regulate telomere function. Subsequent studies revealed that most tankyrase is actually extranuclear, but a discordant pattern of cytoplasmic targeting was reported. Here we used fractionation and immunofluorescence to show in 3T3-L1 fibroblasts that tankyrase is a peripheral membrane protein associated with the Golgi. We further colocalized tankyrase with GLUT4 storage vesicles in the juxtanuclear region of adipocytes. Consistent with this colocalization, we found that tankyrase binds specifically to a resident protein of GLUT4 vesicles, IRAP (insulin-responsive amino peptidase). The binding of tankyrase to IRAP involves the ankyrin repeats of tankyrase and a defined sequence ((96)RQSPDG(101)) in the IRAP cytosolic domain (IRAP(1-109)). Tankyrase is a novel signaling target of mitogen-activated protein kinase (MAPK); it is stoichiometrically phosphorylated upon insulin stimulation. Phosphorylation enhances the poly(ADP-ribose) polymerase activity of tankyrase but apparently does not mediate the acute effect of insulin on GLUT4 targeting. Taken together, tankyrase is a novel target of MAPK signaling in the Golgi, where it is tethered to GLUT4 vesicles by binding to IRAP. We speculate that tankyrase may be involved in the long term effect of the MAPK cascade on the metabolism of GLUT4 vesicles.  相似文献   

7.
Adenovirus E4orf4 (early region 4 open reading frame 4) protein induces protein phosphatase 2A-dependent non-classical apoptosis in mammalian cells and irreversible growth arrest in Saccharomyces cerevisiae. Oncogenic transformation sensitizes cells to E4orf4-induced cell death. To uncover additional components of the E4orf4 network required for induction of its unique mode of apoptosis, we used yeast genetics to select gene deletions conferring resistance to E4orf4. Deletion of YND1, encoding a yeast Golgi apyrase, conferred partial resistance to E4orf4. However, Ynd1p apyrase activity was not required for E4orf4-induced toxicity. Ynd1p and Cdc55p, the yeast protein phosphatase 2A-B subunit, contributed additively to E4orf4-induced toxicity. Furthermore, concomitant overexpression of one and deletion of the other was detrimental to yeast growth, demonstrating a functional interaction between the two proteins. YND1 and CDC55 also interacted genetically with CDC20 and CDH1/HCT1, encoding activating subunits of the anaphase-promoting complex/cyclosome. In addition to their functional interaction, Ynd1p and Cdc55p interacted physically, and this interaction was disrupted by E4orf4, which remained associated with both proteins. The results suggested that Ynd1p and Cdc55p share a common downstream target whose balanced modulation by the two E4orf4 partners is crucial to viability. Disruption of this balance by E4orf4 may lead to cell death. NTPDase-4/Lalp70/UDPase, the closest mammalian homologue of Ynd1p, associated with E4orf4 in mammalian cells, suggesting that the results in yeast are relevant to the mammalian system.  相似文献   

8.
9.
Apolipoprotein E (apoE) isoforms are genetic determinants of interindividual variations in lipid metabolism. To assess whether apoE is a genetic risk factor for cholesterol gallstone disease (GD), we analyzed apoE variants in populations from Chile and Germany, two countries with very high prevalence rates of this disease. ApoE genotypes were determined in Chilean gallstone patients (n = 117) and control subjects (n = 122) as well as in German gallstone patients (n = 184) and matched controls (n = 184). In addition, we studied apoE variants in subgroups of Chilean patients with strong differences in their susceptibility to acquire gallstones: 50 elderly subjects without gallstones in spite of well-known risk factors for this disease (gallstone-resistant) and 32 young individuals with gallstones but without risk factors (gallstone-susceptible). Furthermore, correlation analysis of apoE genotypes with cholesterol crystal formation times, biliary cholesterol saturation index (CSI), and gallstone cholesterol contents was performed in 81 cholecystectomized patients. In this study analyzing the largest sample set available, apoE4 genotype was not associated with an increased frequency of GD in either population. Moreover, in the Chilean population after adjusting for risk factors such as gender, age, body mass index, serum lipids, and glucose, the odds ratio for the association of the apoE4 allele and GD was significantly (P < 0.05) <1. Also, genotypes were not correlated with cholesterol crystal formation time, CSI, or gallstone cholesterol content. In contrast to previous smaller studies, apoE polymorphisms were not associated with susceptibility to cholesterol GD in high-risk populations.  相似文献   

10.
11.
12.
The enzymatic activity of coagulation factor VIIa is controlled by its cellular cofactor tissue factor (TF). TF binds factor VIIa with high affinity and, in addition, participates in substrate interaction through its C-terminal fibronectin type III domain. We analyzed surface-exposed residues in the C-terminal TF domain to more fully determine the area on TF important for substrate activation. Soluble TF (sTF) mutants were expressed in E. coli, and their ability to support factor VIIa-dependent substrate activation was measured in the presence of phospholipid vesicles or SW-13 cell membranes. The results showed that factor IX and factor X interacted with the same TF region located proximal to the putative phospholipid surface. According to the degree of activity loss of the sTF mutants, this TF region can be divided into a main region (residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, Tyr185) forming a solvent-exposed patch of 488 A(2) and an extended region which comprises an additional 7-8 residues, including the distally positioned Asn199, Arg200, and Asp204. Some of the identified TF residues, such as Trp158 and those within the loop Lys159-Lys165, are near the factor VIIa gamma-carboxyglutamic acid (Gla) domain, suggesting that the factor VIIa Gla-domain may also participate in substrate interaction. Moreover, the surface identified as important for substrate interaction carries a net positive charge, suggesting that charge interactions may significantly contribute to TF-substrate binding. The calculated surface-exposed area of this substrate interaction region is about 1100 A(2), which is approximately half the size of the TF area that is in contact with factor VIIa. Therefore, a substantial portion of the TF surface (3000 A(2)) is engaged in protein-protein interactions during substrate catalysis.  相似文献   

13.
14.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

15.
Human Dectin-1, a type II transmembrane receptor, is alternatively spliced, generating eight isoforms. Of these isoforms, the isoform E (hDectin-1E) is structurally unique, containing a complete C-type lectin-like domain as well as an ITAM-like sequence. So far, little is known about its function. In the present study, we demonstrated that hDectin-1E was not secreted and it mainly resided in the cytoplasm. Using yeast two-hybrid screening, we identified a Ran-binding protein, RanBPM, as an interacting partner of hDectin-1E. GST pull-down assays showed that RanBPM interacted directly with hDectin-1E and the region containing SPRY domain was sufficient for the interaction. The binding of hDectin-1E and RanBPM was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Taken together, our data provide a clue to the understanding of the function about hDectin-1E.  相似文献   

16.
17.
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.  相似文献   

18.
19.
Phosphorylation of c-Myc on threonine 58 (T58) stimulates its degradation by the Fbw7-SCF ubiquitin ligase. We used a phosphorylation-specific antibody raised against the c-Myc T58 region to attempt to identify other proteins regulated by the Fbw7 pathway. We identified two predominant proteins recognized by this antibody. The first is Ebna1 binding protein 2, a nucleolar protein that, in contrast with a previous report, is likely responsible for the nucleolar staining exhibited by this antibody. The second is Zcchc8, a nuclear protein that is highly phosphorylated in cells treated with nocodazole. We show that Zcchc8 is directly phosphorylated by GSK-3 in vitro and that GSK-3 inhibition prevents Zcchc8 phosphorylation in vivo. Moreover, we found that Zcchc8 interacts with proteins involved in RNA processing/degradation. We suggest that Zcchc8 is a GSK-3 substrate with a role in RNA metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号