首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophil granules contain secretory molecules that contribute to the implementation of all neutrophil functions. The molecular components that regulate the exocytosis of neutrophil granules have not been characterized. In this study, using small interfering RNA gene-targeting approaches and granulocytes from genetically modified mice, we characterized the Rab27a effectors JFC1/Slp1 and Munc13-4 as components of the exocytic machinery of granulocytes. Using total internal reflection fluorescence microscopy analysis, we show that Rab27a and JFC1 colocalize in predocked and docked vesicles in granulocytes. Next, we demonstrate that JFC1-downregulated granulocytes have impaired myeloperoxidase secretion. Using immunological interference, we confirm that JFC1 plays an important role in azurophilic granule exocytosis in human neutrophils. Interference with Rab27a but not with JFC1 impaired gelatinase B secretion in neutrophils, suggesting that a different Rab27a effector modulates this process. In similar studies, we confirmed that Munc13-4 regulates gelatinase secretion. Immunofluorescence analysis indicates that Munc13-4 localizes at secretory organelles in neutrophils. Using neutrophils from a Munc13-4-deficient mouse model (Jinx), we demonstrate that Munc13-4 plays a central role in the regulation of exocytosis of various sets of secretory organelles. However, mobilization of CD11b was not affected in Munc13-4-deficient neutrophils, indicating that secretory defects in these cells are limited to a selective group of exocytosable organelles.  相似文献   

2.
The Doc2 family comprises the brain-specific Doc2alpha and the ubiquitous Doc2beta and Doc2gamma. With the exception of Doc2gamma, these proteins exhibit Ca(2+)-dependent phospholipid-binding activity in their Ca(2+)-binding C2A domain and are thought to be important for Ca(2+)-dependent regulated exocytosis. In excitatory neurons, Doc2alpha interacts with Munc13-1, a member of the Munc13 family, through its N-terminal Munc13-1-interacting domain and the Doc2alpha-Munc13-1 system is implicated in Ca(2+)-dependent synaptic vesicle exocytosis. The Munc13 family comprises the brain-specific Munc13-1, Munc13-2, and Munc13-3, and the non-neuronal Munc13-4. We previously showed that Munc13-4 is involved in Ca(2+)-dependent secretory lysosome exocytosis in mast cells, but the involvement of Doc2 in this process is not determined. In the present study, we found that Doc2alpha but not Doc2beta was endogenously expressed in the RBL-2H3 mast cell line. Doc2alpha colocalized with Munc13-4 on secretory lysosomes, and interacted with Munc13-4 through its two regions, the N terminus containing the Munc13-1-interacting domain and the C terminus containing the Ca(2+)-binding C2B domain. In RBL-2H3 cells, Ca(2+)-dependent secretory lysosome exocytosis was inhibited by expression of the Doc2alpha mutant lacking either of the Munc13-4-binding regions and the inhibition was suppressed by coexpression of Munc13-4. Knockdown of endogenous Doc2alpha also reduced Ca(2+)-dependent secretory lysosome exocytosis, which was rescued by re-expression of human Doc2alpha but not by its mutant that could not bind to Munc13-4. Moreover, Ca(2+)-dependent secretory lysosome exocytosis was severely reduced in bone marrow-derived mast cells from Doc2alpha knockout mice. These results suggest that the Doc2alpha-Muunc13-4 system regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells.  相似文献   

3.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   

4.
The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome-related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow-derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by beta-hexosaminidase release in vitro and passive cutaneous anaphylaxis in vivo were found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27-deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live-cell time-lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10-fold increase in granules exhibiting fast movement (>1.5 microm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin-based motility.  相似文献   

5.
Griscelli syndrome type 2 (GS2) is a genetic disorder in which patients exhibit life-threatening defects of cytotoxic T lymphocytes (CTLs) whose lytic granules fail to dock on the plasma membrane and therefore do not release their contents. The disease is caused by the absence of functional rab27a, but how rab27a controls secretion of lytic granule contents remains elusive. Mutations in Munc13-4 cause familial hemophagocytic lymphohistiocytosis subtype 3 (FHL3), a disease phenotypically related to GS2. We show that Munc13-4 is a direct partner of rab27a. The two proteins are highly expressed in CTLs and mast cells where they colocalize on secretory lysosomes. The region comprising the Munc13 homology domains is essential for the localization of Munc13-4 to secretory lysosomes. The GS2 mutant rab27aW73G strongly reduced binding to Munc13-4, whereas the FHL3 mutant Munc13-4Delta608-611 failed to bind rab27a. Overexpression of Munc13-4 enhanced degranulation of secretory lysosomes in mast cells, showing that it has a positive regulatory role in secretory lysosome fusion. We suggest that the secretion defects seen in GS2 and FHL3 have a common origin, and we propose that the rab27a/Munc13-4 complex is an essential regulator of secretory granule fusion with the plasma membrane in hematopoietic cells. Mutations in either of the two genes prevent formation of this complex and abolish secretion.  相似文献   

6.
In rat basophilic leukemia-2H3 (RBL-2H3) and Madin-Darby canine kidney (MDCK) cells, cardiotoxin from cobra venom induced a marked decrease in the level of [3H] phosphatidylinositol and a corresponding increase in the level of [3H]phosphatidylinositol 4-monophosphate over the course of 20 min as demonstrated in cells that had been labeled to equilibrium with [3H]inositol. The effect was dependent on the concentration (5-30 micrograms/ml) of the toxin. In plasma membrane-enriched fractions isolated from the two cell lines, the cardiotoxin enhanced the endogenous activity of phosphatidylinositol kinase especially at temperatures above 14 degrees C. In RBL-2H3 cells, cardiotoxin also induced release of substantial amounts of histamine and lactate dehydrogenase. The release of histamine, but not of lactate dehydrogenase, was totally dependent on external calcium and this release probably represented an exocytotic response of the cells to cardiotoxin. Although, initially, treatment with the toxin did not impair antigen-induced hydrolysis of inositol phospholipids or prevent the antigen-induced rise in the concentration of cytosol Ca2+, prolonged exposure to the toxin did result in a progressive loss of responsiveness of RBL-2H3 cells to antigen.  相似文献   

7.
Rat basophilic leukemia (RBL-2H3) cells are a useful in vitro model for studies of mast cells and basophils. We examined the adherence of RBL-2H3 cells to different extracellular matrix proteins and the effect of such attachment on secretion. The cells bound to fibronectin-coated surfaces with maximum binding by 1 h at 37 degrees C. There was less attachment to laminin, collagen type I, and collagen type IV. There was no adherence to uncoated surfaces or in the absence of Ca2+. Binding to fibronectin was blocked by a synthetic peptide containing the sequence Arg-Gly-Asp. Therefore, the binding of RBL-2H3 cells to fibronectin may be mediated by surface molecules that belong to the integrin family. Adherence to fibronectin-coated surfaces resulted in cell spreading, a reorganization of the cytoskeletal elements, and a redistribution of the secretory granules. Attachment to fibronectin also dramatically enhanced high affinity IgE receptor-mediated histamine release. This enhancement was maximum by 1 h of adherence and lasted for at least 6 h. There was also enhanced secretion by the Ca2+ ionophore A23187. Thus, adherence to fibronectin can enhance both receptor and non-receptor-mediated release. Addition of soluble fibronectin to RBL-2H3 cells in suspension had no effect on secretion. Therefore, enhanced histamine release required cell attachment to immobilized fibronectin. These results suggest that secretion from mast cells/basophils may be modulated by their interaction with the extracellular matrix.  相似文献   

8.
LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.  相似文献   

9.
An in vivo disturbance of lymphocyte homeostasis occurs during the course of the hemophagocytic syndrome (HS). HS is a severe and often fatal syndrome resulting from potent and uncontrolled activation and proliferation of T-lymphocytes, mainly polyclonal CD8 lymphocytes, leading to excessive macrophage activation, high level of proinflammatory cytokine production and multiple deleterious effects. The onset of HS characterizes several inherited disorders in humans. In most of these conditions, the molecular defect impairs the granule-dependent cytotoxic activity of lymphocytes, thus highlighting the determinant role of this function in driving back the immune system to a state of equilibrium following infection. Several lines of evidence suggest that an increase in the expansion phase rather than a decrease in the contraction phase of the CD8+ T cells population characterizes the HS. Failure to kill antigen presenting cells through a transaction mechanism of cytotoxic cells should favor a sustained response, although the mechanism may be more complex than simple decrease of antigen load. Defect in the granule dependent cytotoxic function of lymphocytes result from perforin mutation in familial hemophagocytic lymphohistiocytosis type 2, from Munc13-4 (UNC13D) mutation in familial hemophagocytic lymphohistiocytosis type 3, from Rab27a mutation in Griscelli syndrome type 2, and from CHS/LYST mutation in Chediak-Higashi syndrome. The characterization of the molecular causes leading to these conditions identified Rab27a and Munc13-4 as two critical effectors of the exocytic machinery, required for the terminal transport/docking or priming of the cytotoxic granules, respectively. Different members of the Rab and Munc13 family of proteins are also used in neurotransmitter release at the neurological synapse, highlighting the similarity of the mechanisms regulating both secretory pathways. Future investigations regarding HS will continue to elucidate this exocytic pathway machinery and improve our understanding of how it finely regulates the immune response, an area that is likely to be useful for therapeutic intervention.  相似文献   

10.
The small GTPases Rab3 and Rab27 are associated with secretory granules of pancreatic beta-cells and regulate insulin exocytosis. In this study, we investigated the role of Noc2, a potential partner of these two GTPases, in insulin secretion. In the beta-cell line INS-1E wild-type Noc2, Noc265E, and Noc258A, a mutant capable of interacting with Rab27 but not Rab3, colocalized with insulin-containing vesicles. In contrast, two mutants (Noc2138S,141S and Noc2154A,155A,156A) that bind neither Rab3 nor Rab27 did not associate with secretory granules and were uniformly distributed throughout the cell cytoplasm. Overexpression of wild-type Noc2, Noc265E, or Noc258A inhibited hormone secretion elicited by insulin secretagogues. In contrast, overexpression of the mutants not targeted to secretory granules was without effect. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of INS-1E cells to respond to insulin secretagogues, indicating that appropriate levels of Noc2 are essential for pancreatic beta-cell exocytosis. The defect was already detectable in the early secretory phase (0-10 min) but was particularly evident during the sustained release phase (10-45 min). Protein-protein binding studies revealed that Noc2 is a potential partner of Munc13, a component of the machinery that controls vesicle priming and insulin exocytosis. These data suggest that Noc2 is involved in the recruitment of secretory granules at the plasma membrane possibly via the interaction with Munc13.  相似文献   

11.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

12.
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.  相似文献   

13.
A mAb that reacts with the high affinity IgE-R on the rat basophilic leukemia cells (RBL-2H3) was used to inhibit allergic reactions. In vitro, the intact mAb BA3 and its Fab fragment inhibited radiolabeled IgE binding to the RBL-2H3 cells. The mAb binds to the IgE-R with a higher affinity than does IgE. Whereas the intact mAb released histamine from the RBL-2H3 cells, the Fab was inactive. The addition of the Fab fragments to RBL-2H3 inhibited the IgE-mediated histamine release reaction. The Fab fragments also inhibited in vivo passive cutaneous reactions in rats when injected intradermally either before or after IgE. The injection of the mAb Fab i.v. before the injection of the IgE into the skin sites also inhibited reactions, although it was less effective. The results demonstrate that anti-R antibodies can be used as a model for inhibiting immediate hypersensitivity reactions.  相似文献   

14.
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.  相似文献   

15.
A murine interleukin 3 (IL 3)-dependent basophilic mast cell line, PT-18 (A17), and a rat basophilic leukemic cell line, RBL-2H3, were shown to be capable of selective natural cytotoxic (NC) but not natural killer (NK) cell activity. The basophilic cell types could also be augmented in their NC activity by bridging of their surface IgE receptors. IgE-mediated triggering of the basophilic cells was accomplished by coating the cells with IgE and exposing the IgE-bound cells to specific antigen or to anti-IgE monoclonal antibody. Another method of triggering was by direct binding of basophilic cells to anti-IgE receptor monoclonal antibody. Basophilic cells, triggered by these methods, not only displayed increased NC activity but also released a soluble factor capable of selectively lysing NC tumor targets, WEHI-164, but not three of the NK-sensitive targets, YAC-1, RLM1, and RBL-5. Normal C3H/HeJ mouse embryonic fibroblasts were also not lysed. Dose response and time course of the cytotoxic factor release from triggered RBL-2H3 cells were similar to those of tritiated serotonin release. As with serotonin or histamine release, the NC-specific cytotoxic factor (NCCF) was not released in the absence of extracellular calcium. Therefore, NCCF appears to be released along with other mediators during the triggering of basophilic cells by bridging of IgE receptors. The m.w. of the native form of this factor, determined by a gel filtration method, was about 43,000.  相似文献   

16.
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.  相似文献   

17.
The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments we studied the intracellular activation of phospholipase A2 (PLA2) during histamine release. RBL-2H3 cells were stimulated through the IgE receptor, and the homogenates were prepared and tested for phospholipase A2 activity on 1-stearoyl-2-[14C]arachidonyl-sn-3-phosphatidylcholine. The amount of activity in the homogenates was dependent on the concentration of secretagogue used to activate the cells. Under optimal conditions there was a 1.86 +/- 0.12-fold (mean +/- SEM, N = 44) increase in the activity found in homogenates of stimulated cells. Activity was present in homogenates prepared 30 sec after cell activation, was optimal between 5 and 10 min, and decreased later. In time course experiments the PLA2 activation preceded histamine release. The activation of the enzyme in the cell occurred in the presence of 10 microM EGTA in the extracellular medium, which completely inhibited release of arachidonic acid and histamine. However, the activity of the enzyme required Ca2+. The PLA2 activity in the homogenates and the extent of cell stimulation for histamine release were maximal at the same concentration of antigen, and both were blocked by the addition of a monovalent hapten. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA2 enzyme in cellular homogenates during the secretory process.  相似文献   

18.
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.  相似文献   

19.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

20.
Rab27A was the only Rab protein whose dysfunction was found to cause human immunodeficiency. Since Griscelli syndrome patients (i.e., Rab27A-deficient) exhibit silvery hair color (i.e., pigmentary dilution) in addition to loss of cytotoxic killing activity by cytotoxic T lymphocytes, and Rab27A protein is expressed in a wide variety of secretory cells, Rab27A (or its closely related isoform Rab27B) has been implicated in the regulation of different types of membrane trafficking, including melanosome transport and various regulated secretion events. How does Rab27 protein regulate these different types of membrane trafficking? Recent discoveries of three different families of Rab27-binding proteins (a total of eleven distinct proteins) have supplied an important clue to the answer of this question: different types of Rab27 effectors function in different cell types. In this review I describe the literature on the identification of Rab27-binding proteins (i.e., the synaptotagmin-like protein (Slp) family with tandem C2 Ca(2+)-binding motifs, the Slac2 family without any C2 motifs, and Munc13-4, a putative priming factor for exocytosis) and the current state of our understanding of the molecular mechanism of the Rab27-dependent membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号