共查询到20条相似文献,搜索用时 15 毫秒
1.
Guennoun-Lehmann S Fonseca JE Horisberger JD Rakowski RF 《The Journal of membrane biology》2007,216(2-3):107-116
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric
H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected
with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act
on Na,K-ATPase. 相似文献
2.
3.
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na+,K+-ATPase activity. Stimulation of Na+,K+-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na+ retention, whereas inhibited Na+,K+-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na+,K+-ATPase activity, resulting in increased intracellular Na+ and Ca2+ concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated. 相似文献
4.
Naomi Kraus-Friedmann L. Hummel A. Radominska-Pyrek J. M. Little R. Lester 《Molecular and cellular biochemistry》1982,44(3):173-1801
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects. 相似文献
5.
Experimental data on the ion electrogenic transport by Na+,K+-ATPase available in the literature are analyzed. Special attention is paid to the measurements of unsteady-state electric currents initiated by alternating voltage or rapid introduction of the substrate. In the final part, a physical model of the Na+,K+-ATPase functioning is discussed. According to this model, active transport is carried out by opening and closing of the access channels used for the sodium and potassium exchange between solutions on either side of the membrane. The model explains most of the experimental data, although some details (the channel size, rates of individual transport steps) need further refinement. 相似文献
6.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone. 相似文献
7.
Kaplia AA Khizhniak SV Kudriavtseva AG Papageorgakopulu N Osinskiĭ DS 《Ukrainski? biokhimicheski? zhurnal》2006,78(1):29-42
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy. 相似文献
8.
Enzyme activity, representing the sites of K+-stimulated p-nitrophenylphosphatase, a component of the sodium, potassium-stimulated-adenosinetriphosphatase system, has been localized in the somatosensory cortex of the rat brain. The reaction product is most obviously associated with fibers that are thought to be axons and dendrites. Large dendrite-like fibers appear to arise in layer 5 of the cortex and arborize in layers 1 through 4. Smaller, reactive fibers are found throughout the cortical layers. Neuron cell bodies did not exhibit substantial enzymatic activity. It did not appear that glia contributed significantly to the activity in cerebral cortex. 相似文献
9.
Previous studies in expression systems have found different ion activation of the Na+/K+-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used
to quantify Na+,K+-ATPase activity, and the Na+ affinity of Na+,K+-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The
Na+ affinity was higher (K
m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with
glycolytic muscle. Na+,K+-ATPase isoform analysis implied that heterodimers containing the β1 isoform have a higher Na+ affinity than heterodimers containing the β2 isoform. Immunoprecipitation experiments demonstrated that dimers with α1 are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α2 isoform with ouabain suggested that heterodimers containing the α1 isoform have a higher Na+ affinity than heterodimers containing the α2 isoform. The estimated K
m values for Na+ are 4.0, 5.5, 7.5 and 13 mM for α1β1, α2β1, α1β2 and α2β2, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na+,K+-ATPase at physiological Na+ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different
isoform compositions. These differences may have consequences for ion balance across the muscle membrane. 相似文献
10.
Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase 总被引:1,自引:0,他引:1 下载免费PDF全文
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 epsilon, and spinophilin directly associate with the Na(+),K(+)-ATPase and that the associations with arrestins, GRKs, or 14-3-3 epsilon are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na(+),K(+)-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of beta-arrestins accelerated internalization of the Na(+),K(+)-ATPase endocytosis. We also find that GRKs phosphorylate the Na(+),K(+)-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 epsilon, and spinophilin may be important modulators of Na(+),K(+)-ATPase trafficking. 相似文献
11.
P. Vague T. C. Coste M. F. Jannot D. Raccah M. Tsimaratos 《Experimental diabetes research》2004,5(1):37-50
Na+,K+-ATPase is an ubiquitous membrane enzyme
that allows the extrusion of three sodium ions from the cell
and two potassium ions from the extracellular fluid. Its activity
is decreased in many tissues of streptozotocin-induced
diabetic animals. This impairment could be at least partly
responsible for the development of diabetic complications.
Na+,K+-ATPase activity is decreased in the red blood cell
membranes of type 1 diabetic individuals, irrespective of the
degree of diabetic control. It is less impaired or even normal
in those of type 2 diabetic patients. The authors have
shown that in the red blood cells of type 2 diabetic patients,
Na+,K+-ATPase activity was strongly related to blood C-peptide
levels in non–insulin-treated patients (in whom C-peptide
concentration reflects that of insulin) as well as in
insulin-treated patients. Furthermore, a gene-environment
relationship has been observed. The alpha-1 isoform of the
enzyme predominant in red blood cells and nerve tissue is
encoded by the ATP1A1 gene.Apolymorphism in the intron
1 of this gene is associated with lower enzyme activity in patients
with C-peptide deficiency either with type 1 or type
2 diabetes, but not in normal individuals. There are several
lines of evidence for a low C-peptide level being responsible
for low Na+,K+-ATPase activity in the red blood cells.
Short-term C-peptide infusion to type 1 diabetic patients
restores normal Na+,K+-ATPase activity. Islet transplantation,
which restores endogenous C-peptide secretion, enhances
Na+,K+-ATPase activity proportionally to the rise
in C-peptide. This C-peptide effect is not indirect. In fact,
incubation of diabetic red blood cells with C-peptide at
physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or
in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity,
mainly secondary to the lack of C-peptide, plays probably
a role in the development of diabetic complications.
Arguments have been developed showing that the diabetesinduced
decrease in Na+,K+-ATPase activity compromises
microvascular blood flow by two mechanisms: by affecting
microvascular regulation and by decreasing red blood cell
deformability, which leads to an increase in blood viscosity.
C-peptide infusion restores red blood cell deformability
and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to
diabetic neuropathy. Patients with neuropathy have lower
ATPase activity than those without. The diabetes-induced
impairment in Na+,K+-ATPase activity is identical in red
blood cells and neural tissue. Red blood cell ATPase activity
is related to nerve conduction velocity in the peroneal
and the tibial nerve of diabetic patients. C-peptide infusion
to diabetic rats increases endoneural ATPase activity in rat.
Because the defect in Na+,K+-ATPase activity is also probably
involved in the development of diabetic nephropathy and
cardiomyopathy, physiological C-peptide infusion could be
beneficial for the prevention of diabetic complications. 相似文献
12.
Alberto Cerri Mauro Gobbini 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):289-295
Digitalis compounds are used in the treatment of congestive heart failure as positive inotropic agents; their action is mainly due to the inhibition of Na+,K+-ATPase. A well-known drawback is their arrhythmogenic potential. Attempts to find safer digitalis-like compounds by means of molecular simplifications of the typical 5β,14β-steroidal skeleton, which appeared in the medicinal chemistry literature from 1990 until 2002, are briefly reviewed. Several novel achievements were obtained in order to better understand the requisites of the digitalis binding site on Na+, K+-ATPase. Only minor simplification, such as cleavage of the D ring of the digitalis skeleton, could preserve the desired inotropic activity, while highly simplified digitalis-like compounds failed to give sufficiently high inotropic potency, even in the presence of a powerful pharmacophore, such as the O-aminoalkyloxime group. 相似文献
13.
Boldyrev AA 《Membrane & cell biology》2000,13(6):715-719
Nobel Prize of 1997 in chemistry was awarded to three scientists fruitfully working in bioenergetics. J. Walker and P. Boyer were awarded the Prize for studies of structure and mechanism of functioning of the H+-transporting (mitochondrial) adenosine triphosphatase. The decision of the Nobel Committee was not unexpected, since these works were very impressive. Special attention was drawn to the fact that the investigations of Walker, the recognized specialist in protein structure, made possible the experimental confirmation of regularities in the mitochondrial ATPase functioning discovered by P. Boyer. The third member of this triumph of bioenergetics is Jens-Christian Skou who described the Na+,K+-activated ATPase in 1957 and then characterized the enzyme properties in detail. Forty years of his scientific biography were devoted to this enzyme. Along with accumulation of scientific knowledge, that constituted the fundamental contribution to bioenergetics (J.Skou is rightfully considered as one of founders of this branch in the present-day biology), the world-wide known school of scientists was established, and starting from 1974, members of this school organize regular conferences on this enzyme. 相似文献
14.
Summary Na+, K+-ATPase plays a central role in the ionic and osmotic homeostasis of cells and in the movements of electrolytes and water across epithelial boundaries. Microscopic localization of the enzyme is, therefore, of crucial importance in establishing the subcellular routes of electrolyte flow across structurally complex and functionally polarized epithelia. Recently developed approaches to the localization of Na+, K+-ATPase are reviewed. These methods rely on different properties of the enzyme and encompass cytochemical localization of the K+-dependent nitrophenylphosphatase component of the enzyme, autoradiographic localization of tritiated ouabain binding sites, and immunocytochemical localization of the holoenzyme and of its catalytic subunit. The rationales for each of these techniques are outlined as are the critieria that have been established to validate each method. The observed localization of Na+, K+-ATPase in various tissues is discussed, particularly as it relates to putative and hypothetical mechanisms that are currently thought to mediate reabsorptive and secretory electrolyte transport. 相似文献
15.
16.
Georgina Rodríguez de Lores Arnaiz 《Molecular neurobiology》1992,6(4):359-375
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit
of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium
pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of
Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest
to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory,
that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories.
Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced
by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was
able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and
use of the fraction.
The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I
and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II.
In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus
resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography
and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar
to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance. 相似文献
17.
The ability of ATP, CTP, ITP, GTP, UTP and two synthetic ATP analogs to provide for ouabain-sensitive Na+ accumulation into proteoliposomes with a reconstituted Na+,K+-ATPase (ATP phosphohydrolase, EC 3.6.1.37) was investigated. A correlation between the proton-accepting properties of the nucleotides and their ability to provide for active transport was found. The proton-accepting properties of the substrate seem to be a necessary condition for the shift from the K-form of Na+,K+-ATPase--an immutable step in the active translocation of Na+ and K+ through the Na+ pump. 相似文献
18.
19.
Summary To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the -subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the -subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.Supported by Grant AM 17047 from NIH and by the Veterans Administration 相似文献