首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of ethidium-labeled tRNAPhe from yeast with ribosomes from yeast and Escherichia coli was studied by stead-state measurements of fluorescence intensity and polarization. The ethidium label was covalently inserted into either the anticodon or the dihydrouridine loop of the tRNA. The codon-independent formation of a tRNA-ribosome complex led to only a moderate increase of the observed fluorescence polarization indicating a considerable internal mobility of the labeled parts of the tRNA molecule in the ribosome complex. When the ribosome complex was formed in the presence of poly(U), the probes both in the dihydrouridine loop and in the anticodon loop were strongly immobilized, the latter exhibiting a substantial increase in fluorescence intensity. A smaller intensity change was observed when E. coli ribosomes were used, although the extent of immobilization was found to be similar in this case. Competition experiments with non-labeled tRNAPhe showed that the labeled tRNAPheEtd was readily released from the complex with yeast ribosomes when poly(U) was absent, whereas in the presence of poly(U) it was bound practically irreversibly. The finding that the mobility of a probe in the dihydrouridine loop is affected by the codon-anticodon interaction on the ribosome suggests a conformational change of the ribosome-bound tRNA which may involve opening of the tertiary structure interactions between the dihydrouridine and the TpsiC loop.  相似文献   

2.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   

3.
ESR studies on the interaction of spin-labeled polynucleotides with ribosomes require a sufficient label-to-nucleotide ratio. Using three different spin labels (SL) we have elaborated a technique to label poly(U) up to a ratio of 1 SL per 30 uridine residues. This ratio is much higher than maximal values obtained by other authors. The SL-poly(U) was shown to have the same activity as unlabeled poly(U) to direct synthesis of poly(Phe). SL-poly(U) binds to rat liver ribosomes in the presence of Mg2+ as shown by ESR. Titration with EDTA leads to a release of SL-poly(U) from ribosomes.  相似文献   

4.
Codon-anticodon interaction at the ribosomal E site   总被引:3,自引:0,他引:3  
The question of whether or not the tRNA at the third ribosomal binding site specific for deacylated tRNA (E site) undergoes codon-anticodon interaction was analyzed as follows. Poly(U)-programmed ribosomes each carrying two [14C]tRNAPhe molecules were subjected to a chasing experiment using various tRNA species. At 0 degree C Ac[3H]Phe-tRNAPhe did not trigger any chasing whereas deacylated cognate tRNAPhe provoked a strong effect; non-cognate tRNALys was totally ineffective. This indicates that the second [14C]tRNAPhe cannot be present at the A site but rather at the E site (confirming previous observations). In the presence of poly(U) or poly(A) ribosomes bound the cognate tRNA practically exclusively as second deacylated tRNA, i.e. [14C]tRNAPhe and [14C]tRNALys, respectively. Thus, the second deacylated tRNA binds in a codon-dependent manner. [14C]tRNALys at the P site and Ac[3H]Lys-tRNALys at the A site of poly(A)-primed ribosomes were translocated to the E and P sites, respectively, by means of elongation factor G. The E site-bound [14C]tRNALys could be significantly chased by cognate tRNALys but not by non-cognate tRNAPhe, indicating the coded nature of the E site binding. Additional evidence is presented that the ribosome accommodates two adjacent codon-anticodon interactions at either A and P or P and E sites.  相似文献   

5.
The numbers of sulphydryl groups on NH4Cl-washed rat liver polyribosomes in different functional states were measured under carefully standardized conditions with 14C-labelled N-ethylmaleimide and 35S-labelled 5,5-dithio-bis(2-nitrobenzoic acid). Ribosomes denatured with urea had 120 titratable sulphydryl groups, 60 on each subunit, whereas native ribosomes invariably showed fewer available sulphydryl groups. Ribosomes stripped of transfer RNA (S-type ribosomes) had 55 available sulphydryl groups. Ribosomes bearing the growing peptidyl-tRNA at the acceptor site had 41 sulphydryl groups available. If these A-type ribosomes were labelled with 14C-labelled N-ethylmaleimide and dissociated into subunits, 23 of the labelled sulphydryl groups were found on the 60 S subunit and 19 on the 40 S subunit. After translocation of the peptidyl-tRNA to the donor position on ribosomes (D ribosomes), the number of available sulphydryl groups increased to 72, of which 43 were on the 60 S subunit and 29 on the 40 S subunit. This demonstrates that both subunits participate in the change of peptidyl-tRNA from the A to D positions. When the D ribosomes were reacted with EF2 (elongation factor) and GTP, the available sulphydryl groups increased to 82; addition of EF2 alone or with GDP, GDPCP or ATP failed to cause this increase, which has accordingly been attributed to an energy-dependent conformational change in the ribosome.Ribosomes were reconstructed from subunits with poly(U) and Phe-tRNA. In the presence of poly(U) only, a ribosome with 55 available SH groups was formed, thus corresponding to the stripped ribosomes. When both poly(U) and Phe-tRNA were present, a ribosome was formed with 44 available sulphydryl groups, corresponding approximately to an A-type ribosome. Since no EF1 or GTP was used in reconstructing this ribosome, these data indicate that the conformation of A-type ribosomes is not dependent on EF1 or GTP, but is due to the presence of tRNA at the acceptor site.We therefore incline to the view that the observed changes in available SH groups reflect conformational changes, with an opening up of ribosome structure as it progresses from having the peptidyl-tRNA at the A position to the D position and then binds EF2 and GTP, followed by a restoration of the more compact from when the incoming aminoacyl-tRNA is then bound.  相似文献   

6.
Ribosomes can have two states at 0 degree C: competent and noncompetent in translocation. In both states poly(U)-programmed ribosomes bind phenylalanyl-tRNA to A and P sites and form peptide bond. Elongation factor G promotes fast translocation in competent ribosomes and makes them noncompetent ones. Initial correlation between competent and noncompetent ribosomes is 2:1. Addition of deacylated tRNA does not influence phenomenon described as well as thermal reactivation of the ribosomes before beginning of the experiments. The possibility of deacylated tRNA translocation is shown. The translocation does not occurred provided that at least one of the ribosome sites is filled with shortened tRNA analog (tRNA with truncated CCA-end or tRNA anticodon arm).  相似文献   

7.
Escherichia coli 70-S ribosomes contain a third site for tRNA binding, additional to the A and P sites. This conclusion is based on several findings. Direct measurements showed that in the presence of poly(U), when both A and P sites are occupied by Ac[14C]Phe-tRNAPhe, ribosomes are capable of binding additionally deacylated non-cognate [3H]tRNA. If ribosomes in the preparation are active enough, the total binding of labeled ligands amounted to 2.5 mol/mol ribosomes. In the absence of poly(U), when the A site can not bind, the P site and the 'additional' site can be filled simultaneously with Ac[14C]Phe-tRNAPhe and deacylated [3H]tRNA, or with [3H]tRNA alone; the total binding exceeds in this case 1.5 mol/mol ribosomes. The binding at the 'additional' site is not sensitive to the template. [3H]tRNA bound there is able to exchange rapidly for unlabeled tRNA in solution. Deacylated tRNA is preferred to the aminoacylated one. The binding of AcPhe-tRNAPhe was not observed there at all. The 3'-end adenosine is essential for the affinity. The function of the 'additional' site is not known, but its existence has to be considered when tRNA . ribosome complexes are studied.  相似文献   

8.
9.
Results are presented to prove that bromoacetyl-phenylalanyl-transfer RNA reacts covalently with 50 S ribosomal proteins L2 and L27 while it is bound correctly to the peptidyl site on the 70 S ribosome. Attachment of the BrAcPhe moiety to tRNA causes a 100-fold enhancement of its reactivity with ribosomes. This reactivity closely parallels binding of tRNA whether measured by poly(U) stimulation or competition with deacylated tRNA. BrAcPhe-tRNA can bind correctly to the P site as judged by puromycin releasibility and lack of tetracycline inhibition. Little significant reaction of BrAcPhe-tRNA with L2 and L27 occurs during procedures used to purify and analyze ribosomal proteins. If ribosomes are first incubated with BrAcPhe-tRNA and subsequently treated with puromycin before analysis, little inhibition of the covalent reaction with L2 and L27 is observed. In contrast, a few minor reaction products are markedly suppressed. Covalently attached BrAcPhe-tRNA is still capable of accepting an amino acid from Phe-tRNA or puromycin. The products from this reaction are found attached to proteins L2 and L27 and to a lesser extent to L15 and L16. This shows that true affinity labeling of proteins in the peptidyl binding site has been accomplished.Some covalent reaction of BrAcPhe-tRNA with the 30 S protein S18 is also observed. This reaction is not poly(U)-dependent, however, and S18-reacted BrAcPhe-tRNA is not capable of peptide bond formation with Phe-tRNA. It seems likely that reaction with S18 results from a non-functional interaction of the affinity label with the ribosome.  相似文献   

10.
ms2i6A deficiency enhances proofreading in translation.   总被引:4,自引:0,他引:4  
The hypermodified base 2-methylthio-N6-isopentenyladenosine (ms2i6A) at position 37 occurs frequently in tRNAs that read codons starting with uridine. Here we have studied how ms2i6A affects the accuracy of poly(U) translation in vitro. Deficiency leads to a higher rejection rate of tRNA4(Leu) by more aggressive proofreading on the wild-type ribosome, but with the initial selection step unchanged. Our data indicate that ms2i6A has no effect on codon-anticodon interactions on wild-type ribosomes as long as aminoacyl-tRNA is in ternary complex with EF-Tu and GTP. ms2i6A deficiency in the cognate poly(U) reader tRNA(Phe) leads to increased misreading when the near-cognate competitor tRNA4(Leu) is wild-type. ms2i6A deficiency in tRNA4(Leu) gives a decreased error level in competition with wild-type tRNA(Phe).  相似文献   

11.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.  相似文献   

12.
Specific spin-labeling of transfer ribonucleic acid molecules.   总被引:5,自引:5,他引:0       下载免费PDF全文
The spin labels anhydride (ASL), bromoacetamide (BSL) and carbodiimide (CSL) were used to label selectively tRNAGlu, tRNA fMet and tRNAPhe from E. coli. The preparation and characterization of the sites of labeling of eight new spin-labeled tRNAs are described. The sites of labeling are: s2U using ASL, BSL and CLS and tRNAGlu; s4U using ASL and BSL on tRNAfMet and tRNAPhe; U-37 with CSL on tRNfMet; U-33 with CSL on tRNAPhe. The rare base X at position 47 of tRNAPhe has been acylated with a spin-labeled N-hydroxysuccinimide (HSL). The 3'end of unfractionated tRNA molecules has been chemically modified to a morpholino spin-labeled analogue (MSL). Their respective e.s.r. spectra are reported and discussed.  相似文献   

13.
30S ribosomal protein S4 contains a single cysteine residue at position 31. We have selectively cleaved the peptide bond adjacent to this residue using the reagent 2-nitro-5-thiocyanobenzoic acid. The two resultant fragments were purified. The smaller S4-fragment (1-30) was found to be incapable of interacting with 16S RNA directly. This fragment also is not incorporated into a particle reconstituted from 16S RNA and 20 purified proteins with S4 missing. In contrast, the large S4-fragment (31-203) appears to be fully functional in ribosome assembly. Replacement of S4 with this fragment in the reconstitution reaction leads to a complete 30S ribosome containing all 30S proteins. This particle has a full capacity to bind poly U but has lost all activity for poly U directed phe-tRNA binding. We therefore propose that the N-terminus of protein S4 is not critical for ribosome assembly but is essential for tRNA binding.  相似文献   

14.
EF-G bound to poly(U)·ribosomes prevents enzymatic or nonenzymatic binding of charged tRNA not only to the A-site but also to the P-site. In turn, charged tRNA bound either to the P- or A-site prevents formation of EF-G·GMPPCP·ribosome complex. Ribosomes carrying newly synthetized peptidyl-tRNA in pretranslocative state are also unable to form stable complexes with EF-G. The functional implications of these observations are discussed and it is suggested that tRNA plays a regulatory role in the interaction of EF-G with ribosomes during the cyclic process of elongation.  相似文献   

15.
Human placenta and Escherichia coli Phe-tRNA(Phe) and N-AcPhe-tRNA(Phe) binding to human placenta 80S ribosomes was studied at 13 mM Mg2+ and 20 degrees C in the presence of poly(U), (pU)6 or without a template. Binding properties of both tRNA species were studied. Poly(U)-programmed 80S ribosomes were able to bind charged tRNA at A and P sites simultaneously under saturating conditions resulting in effective dipeptide formation in the case of Phe-tRNA(Phe). Affinities of both forms of tRNA(Phe) to the P site were similar (about 1 x 10(7) M-1) and exceeded those to the A site. Affinity of the deacylated tRNA(Phe) to the P site was much higher (association constant > 10(10) M-1). Binding at the E site (introduced into the 80S ribosome by its 60S subunit) was specific for deacylated tRNA(Phe). The association constant of this tRNA to the E site when A and P sites were preoccupied with N-AcPhe-tRNA(Phe) was estimated as (1.7 +/- 0.1) x 10(6) M-1. In the presence of (pU)6, charged tRNA(Phe) bound loosely at the A and P sites, and the transpeptidation level exceeded the binding level due to the exchange with free tRNA from solution. Affinities of aminoacyl-tRNA to the A and P sites in the presence of (pU)6 seem to be the same and much lower than those in the case of poly(U). Without a messenger, binding of the charged tRNA(Phe) to 80S ribosomes was undetectable, although an effective transpeptidation was observed suggesting a very labile binding of the tRNA simultaneously at the A and P sites.  相似文献   

16.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

17.
The dihydrouracil residue at position 20 of Escherichia coli tRNAGly1 has been replaced by the photoaffinity reagent, N-(4-azido-2-nitrophenyl)glycyl hydrazide (AGH). The location of the substituent was confirmed by the susceptibility of the modified tRNA to cleavage with aniline. When N-acetylglycyl-tRNAGly1 derivatized with AGH was bound noncovalently to the P site of E. coli 70 S ribosomes, 5-6% on average was photochemically cross-linked to the ribosomal particles in a reaction requiring poly(G,U), irradiation and the presence of the AGH label in the tRNA. Approximately two-thirds of the covalently attached tRNA was associated with 16 S RNA in the 30 S subunit. This material was judged to be in the P site by the criterion of puromycin reactivity. As partial RNAase digestion of the tRNA-16 S RNA complex produced labeled fragments from both 5' and 3' segments of the rRNA, there appeared to be more than one site of cross-linking in the 30 S subunit. The small amount of N-acetylglycyl-tRNAGly1 associated with the 50 S subunit was also linked mainly to rRNA, but it was not puromycin-reactive.  相似文献   

18.
A S Spirin 《FEBS letters》1984,165(2):280-284
An experimental system where the elongation of a polypeptide (polyphenylalanine) is performed stepwise and synchronously by purified Escherichia coli ribosome in a matrix-coupled poly (U) column is proposed for testing the number of non-overlapping tRNA binding sites on the elongating ribosome. If phenylalanyl[3H]tRNA is introduced into the column and bound with the ribosomes at the beginning of a given elongation cycle, deacylated [3H]tRNA is shown to be released from the ribosomes and comes out from the column at the translocation step of the next elongation cycle. The result obtained is fully predicted by the classical two-tRNA-site model and contradicts any model involving more than two non-overlapping high-affinity tRNA binding sites in the ribosomal elongation cycle.  相似文献   

19.
Three mRNA analogs--derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position--were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNA(Phe) was used, while tRNA(Val) was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions -3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with soft UV light (lambda > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions -1 to +3 binds to G1207, while that in positions -2 or -3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the -3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the -3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号