首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compounds and organic acids; however, organic acids suppressed glucose utilization.  相似文献   

2.
Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compounds and organic acids; however, organic acids suppressed glucose utilization.  相似文献   

3.
Pseudomonas putida CSV86 utilizes aromatic compounds in preference to glucose and coutilizes aromatics and organic acids. Protein analysis of cells grown on different carbon sources, either alone or in combination, revealed that a 43-kDa periplasmic-space protein was induced by glucose and repressed by aromatics and succinate. Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis identified this protein as closely resembling the sugar ABC transporter of Pseudomonas putida KT2440. A partially purified 43-kDa protein showed glucose binding activity and was specific for glucose. The results demonstrate that the aromatic- and organic acid-mediated repression of a periplasmic-space glucose binding protein and consequent inhibition of glucose transport are responsible for this strain's ability to utilize aromatics and organic acids in preference to glucose.  相似文献   

4.
Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb) revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNAGly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI) for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT) suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.  相似文献   

5.
Pseudomonas putida CSV86 utilizes glucose, naphthalene, methylnaphthalene, benzyl alcohol and benzoate as the sole source of carbon and energy. Compared with glucose, cells grew faster on aromatic compounds as well as on organic acids. The organism failed to grow on gluconate, 2-ketogluconate, fructose and mannitol. Whole-cell oxygen uptake, enzyme activity and metabolic studies suggest that in strain CSV86 glucose utilization is exclusively by the intracellular phosphorylative pathway, while in Stenotrophomonas maltophilia CSV89 and P. putida KT2442 glucose is metabolized by both direct oxidative and indirect phosphorylative pathways. Cells grown on glucose showed five- to sixfold higher activity of glucose-6-phosphate dehydrogenase compared with cells grown on aromatic compounds or organic acids as the carbon source. Study of [14C]glucose uptake by whole cells indicates that the glucose is taken up by active transport. Metabolic and transport studies clearly demonstrate that glucose metabolism is suppressed when strain CSV86 is grown on aromatic compounds or organic acids.  相似文献   

6.
Pseudomonas putida CSV86 preferentially utilizes aromatics over glucose and co-metabolizes them with organic acids. On aromatics plus glucose, CSV86 utilized aromatics first with concomitant appearance of transient metabolites such as salicylate, benzaldehyde and benzoate. Citrate was the main extracellular metabolite observed during glucose uptake. The strain showed simultaneous utilization of organic acids and aromatic compounds. Based on the metabolite analysis and growth profiles, we hypothesize that the repression of glucose utilization could be due to organic acid intermediates generated from aromatic compound metabolism. The online measurements indicate the instantaneous metabolic state of the culture. For example, the CO2 evolution and agitation speed show peak values during the two growth phases in the diauxic growth while dissolved oxygen values show decrease at the corresponding durations. These measurements correlated well with the offline measurements but provided a better time resolution of the process.  相似文献   

7.
Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by GC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to-CH2OH which is further converted to-CHO and-COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.  相似文献   

8.
Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two enzymes of the xylene degradative pathway encoded by the plasmid TOL of a Gram-negative bacterium Pseudomonas putida, were purified and characterized. Benzyl alcohol dehydrogenase catalyses the oxidation of benzyl alcohol to benzaldehyde with the concomitant reduction of NAD+; the reaction is reversible. Benzaldehyde dehydrogenase catalyses the oxidation of benzaldehyde to benzoic acid with the concomitant reduction of NAD+; the reaction is irreversible. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase also catalyse the oxidation of many substituted benzyl alcohols and benzaldehydes, respectively, though they were not capable of oxidizing aliphatic alcohols and aldehydes. The apparent Km value of benzyl alcohol dehydrogenase for benzyl alcohol was 220 microM, while that of benzaldehyde dehydrogenase for benzaldehyde was 460 microM. Neither enzyme contained a prosthetic group such as FAD or FMN, and both enzymes were inactivated by SH-blocking agents such as N-ethylmaleimide. Both enzymes were dimers of identical subunits; the monomer of benzyl alcohol dehydrogenase has a mass of 42 kDa whereas that of the monomer of benzaldehyde dehydrogenase was 57 kDa. Both enzymes transfer hydride to the pro-R side of the prochiral C4 of the pyridine ring of NAD+.  相似文献   

9.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   

10.
Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cystathionine beta-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine gamma-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine gamma-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.  相似文献   

11.
Pseudomonas putida F6 was found to metabolize p-hydroxyphenylacetic acid through 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxybenzaldehyde. Cell extracts of P. putida F6 catalyze the NAD(P)H-independent hydroxylation of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid which is further oxidized to 3,4-dihydroxymandelic acid. Oxidation and decarboxylation of the latter yields 3,4-dihydroxybenzaldehyde. A red-brown color accompanies all of the above enzyme activities and is probably due to the polymerization of quinone-like compounds. 3,4-Dihydroxybenzaldehyde is further metabolized through extradiol ring cleavage.  相似文献   

12.
13.
An organism identified as Pseudomonas putida was found to utilize citronellol or geraniol as the sole carbon and energy source. The ability to degrade these acyclic isoprenols was associated with pSRQ50, a 50-megadalton transmissible plasmid.  相似文献   

14.
Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD+ dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD+, while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K m value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K m and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.  相似文献   

15.
The metabolism of the natural amino acid l-valine, the unnatural amino acids d-valine, and d-, l-phenyglycine (d-, l-PG), and the unnatural amino acid amides d-, l-phenylglycine amide (d-, l-PG-NH2) and l-valine amide (l-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed constitutive l-amidase activities towards l-PG-NH2 and l-Val-NH2, both following the same pattern of expression, suggesting the involvement of similarly regulated enzymes, or a common enzyme. Quite surprisingly, growth in mineral media with l-PG-NH2 resulted in variable, long lag phases of growth and strongly reduced l-amidase activities. Conversion of d-PG-NH2 into d-PG and l-PG also occurred and could be attributed to the presence of an inducible d-amidase and the racemization of the amino acid amide in combination with l-amidase activity, respectively. The further degradation of l-PG and d-PG involved constitutive l-PG aminotransferase and inducible d-PG dehydrogenase activities, respectively, both with a high degree of enantioselectivity. Amino acid racemase activity for d- and l-PG was not detected. Correspondence to: L. Dijkhuizen  相似文献   

16.
Partially purified preparations of catechol 2,3-dioxygenase from toluene-grown cells of Pseudomonas putida catalyzed the stoichiometric oxidation of 3-methylcatechol to 2-hydroxy-6-oxohepta-2,4-dienoate. Other substrates oxidized by the enzyme preparation were catechol, 4-methylcatechol, and 4-fluorocatechol. The apparent Michaelis constants for 3-methylcatechol and catechol were 10.6 and 22.0 muM, respectively. Substitution at the 4-position decreases the affinity and activity of the enzyme for the substrate. Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol. In addition, incubation of the enzyme with 3-chlorocatechol led to inactivation of the enzyme. Kinetic analyses revealed that both 3-chlorocatechol and 4-chlorocatechol were noncompetitive or mixed-type inhibitors of the enzyme. 3-Chlorocatechol (Ki = 0.14 muM) was a more potent inhibitor than 4-chlorocatechol (Ki = 50 muM). The effect of the ion-chelating agents Tiron and o-phenanthrolene were compared with that of 3-chlorocatechol on the inactivation of the enzyme. Each inhibitor appeared to remove iron from the enzyme, since inactive enzyme preparations could be fully reactivated by treatment with ferrous iron and a reducing agent.  相似文献   

17.
The oxidative d-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on d-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g d-xylose−1) and a maximum growth rate of 0.21 h−1. Remarkably, most of the genes of the xylXABCD operon appeared to be dispensable for growth on d-xylose. Only the xylD gene, encoding d-xylonate dehydratase, proved to be essential for establishing an oxidative d-xylose catabolic pathway in P. putida S12. The growth performance on d-xylose was, however, greatly improved by coexpression of xylXA, encoding 2-keto-3-deoxy-d-xylonate dehydratase and α-ketoglutaric semialdehyde dehydrogenase, respectively. The endogenous periplasmic glucose dehydrogenase (Gcd) of P. putida S12 was found to play a key role in efficient oxidative d-xylose utilization. Gcd activity not only contributes to d-xylose oxidation but also prevents the intracellular accumulation of toxic catabolic intermediates which delays or even eliminates growth on d-xylose.The requirement for renewable alternatives to replace oil-based chemicals and fuels necessitates development of novel technologies. Lignocellulose provides a promising alternative feedstock. However, since the pentose sugar fraction may account for up to 25% of lignocellulosic biomass (12), it is essential that this fraction is utilized efficiently to obtain cost-effective biochemical production. In a previous study, the solvent-tolerant bacterium Pseudomonas putida S12, known for its use as a platform host for the production of aromatic compounds (15, 16, 19, 22), was engineered to use d-xylose as a sole carbon source. This was achieved by introducing genes encoding the phosphorylative d-xylose metabolic pathway of Escherichia coli, followed by laboratory evolution (14). Prior to evolutionary improvement, extensive oxidation of d-xylose to d-xylonate occurred, resulting in a very low biomass-for-substrate yield as d-xylonate is a metabolic dead-end product in P. putida. The evolution approach resulted in elimination of the activity of periplasmic glucose dehydrogenase (Gcd), the enzyme responsible for d-xylose oxidation, which turned out to be a critical step in optimizing phosphorylative d-xylose utilization in P. putida S12.Instead of prevention of endogenous oxidation of d-xylose, this oxidation may be used to our advantage when it is combined with an oxidative d-xylose metabolic pathway, such as the pathways described for several Pseudomonas species, Caulobacter crescentus, and Haloarcula marismortui (7, 11, 18, 20). In these pathways, d-xylonate is dehydrated to 2-keto-3-deoxy-d-xylonate. This intermediate either can be cleaved into pyruvate and glycolaldehyde (7) or is further dehydrated to α-ketoglutaric semialdehyde (α-KGSA). In the final step of the latter pathway, α-KGSA is oxidized to the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (18, 20).In addition to Gcd (PP1444), some of the enzymes required for oxidative d-xylose metabolism are expected to be endogenous in P. putida S12. Transport of d-xylonate into the cytoplasm likely occurs through the gluconate transporter (encoded by gntP [PP3417]). The enzyme catalyzing the final step of the pathway, α-KGSA dehydrogenase, is also likely to be present (presumably PP1256 and/or PP3602) because of the requirement for metabolism of 4-hydroxyproline (1), a compound that is efficiently utilized by P. putida S12. In view of these properties, the most obvious approach for constructing d-xylose-utilizing P. putida S12 is reconstruction of a complete oxidative d-xylose metabolic pathway by introducing the parts of such a pathway that complement the endogenous activities. Recently, the genetic information for one such oxidative d-xylose pathway has become available (18), enabling the approach used in the present study, i.e., expression of the oxidative d-xylose metabolic pathway of C. crescentus in P. putida S12 and investigation of the contribution of endogenous enzyme activities.  相似文献   

18.
Metabolism of Phenol and Cresols by Mutants of Pseudomonas putida   总被引:8,自引:13,他引:8  
Mutant strains of Pseudomonas putida strain U have been obtained which are deficient in enzymes of the degradative pathways of phenol and cresols. Mutant strains deficient in catechol 2, 3-oxygenase accumulated the appropriate catechol derivative from cresols. A mutant strain which would not grow on either phenol or a cresol was shown to be deficient in both 2-hydroxymuconic semialdehyde hydrolase and a nicotinamide adenine dinucleotide, oxidized form, (NAD(+))-dependent aldehyde dehydrogenase. When this strain was grown in the presence of phenol or a cresol, the appropriate product of meta fission of these compounds accumulated in the growth medium. A partial revertant of this mutant strain, which was able to grow on ortho- and meta-cresol but not para-cresol, was shown to have regained only the hydrolase activity. This strain was used to show that the products of meta ring fission of the cresols and phenol are metabolized as follows: (i) ortho- and meta-cresol exclusively by a hydrolase; (ii) para-cresol exclusively by a NAD(+)-dependent aldehyde dehydrogenase; (iii) phenol by both a NAD(+)-dependent dehydrogenase and a hydrolase in the approximate ratio of 5 to 1. This conclusion is supported by the substrate specificity and enzymatic activity of the hydrolase and NAD(+)-dependent aldehyde dehydrogenase enzymes of the wild-type strain. The results are discussed in terms of the physiological significance of the pathway. Properties of some of the mutant strains isolated are discussed.  相似文献   

19.
20.
We have identified an alcohol dehydrogenase activity in Pseudomonas putida strains carrying the CAM-OCT degradative plasmid that were grown on octane. The activity is nicotinamide adenine dinucleotide independent, sediments at 48,000 x g, and shows 20-fold greater activity with octanol rather than butanol as substrate. The enzyme is inducible by unoxidized alkane and is present only in strains that have the OCT plasmid genes for alkane degradation with a wild-type alcO locus. No analogous chromosomal dehydrogenase could be detected. Wild-type and actanol-negative mutants (alcA-) without plasmids both contain a constitutive nicotinamide adenine dinucleotide-linked soluble alcohol dehydrogenase activity. This means that alcA- mutants are cryptic for octanol oxidation and suggests that the particulate plasmid-coded alcohol dehydrogenase activity is active on surface- or membrane-bound substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号