首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
siRNA核糖分子化学修饰对RNAi功能的影响   总被引:1,自引:0,他引:1  
RNA干扰(RNAi)是基于正常RNA生理调节反应,主要由小干扰RNA(siRNA)引发的转录后基因沉默现象.RNAi技术是基因功能研究的重要手段.目前困扰siRNA进入临床的主要困难有siRNA分子易降解、稳定性差、转运效率低、存在靶外效应和免疫刺激反应等.siRNA分子骨架中核糖化学修饰能够一定程度克服上述障碍,降低siRNA给药剂量,减少副作用,是siRNA进入临床最可能的方式.对核糖分子常用位点尤其是2-′羟基化学修饰后siRNA分子的药动学性状及RNAi功能做了分析.  相似文献   

2.
RNA干扰(RNA interference,RNAi)是一种由双链RNA诱发的转录后水平的基因沉默现象,是近几年发展起来的基因表达调节新机制。RNAi广泛存在于真菌、植物和动物中,这种调控可以由siRNA、shRNA及miRNA等小分子RNA参与。在此主要对RNAi的研究进展如背景、分子调控机制、存在的问题和应用前景等进行了综述。  相似文献   

3.
RNA干扰作用(RNAi)研究进展   总被引:25,自引:4,他引:21  
RNA干扰作用 (RNAi)是生物界一种古老而且进化上高度保守的现象 ,是基因转录后沉默作用 (PTGS)的重要机制之一 .RNAi主要通过dsRNA被核酸酶切割成 2 1~ 2 5nt的干扰性小RNA即siRNA ,由siRNA介导识别并靶向切割同源性靶mRNA分子而实现 .RNAi要有多种蛋白因子以及ATP参与 ,而且具有生物催化反应特征 .RNAi是新发现的一种通过dsRNA介导的特异性高效抑制基因表达途径 ,在后基因组时代的基因功能研究和药物开发中具有广阔应用前景  相似文献   

4.
核糖核酸干扰(RNAi)是指一个由双链RNA诱导具有相同碱基序列的靶标RNA降解的现象,它是沉默基因表达的一个十分有效的手段.RNAi导致基因沉默的机制可分为以下两步:首先由核酸酶Dicer切割长的双链RNA形成小片段碱基(19—25)的siRNA.然后,这些siRNA组成一个RNA诱导沉默复合体(RISC),并且siRNA被一个内源激酶磷酸化,双链siRNA打开,让反义RNA引导RISC至其目的信使RNA(mRNA).从而使其目的mRNA内切降解.RNAi技术可以应用到许多生命科学研究方面,如功能基因组以及医药研究.同时讨论了RNAi的一些最新进展如siRNA的设计和导入细胞的方法.  相似文献   

5.
ERI-1是一种3"→5"核糖核酸外切酶,具有一个类ERI-1_3"hExo结构域和一个SAP结构域,在真核生物中保守存在。ERI-1最初是在筛选秀丽隐杆线虫dsRNA敏感性增强突变体时发现的,是RNAi的重要调节因子。ERI-1通过与外源性RNAi组分竞争Dicer协调内源RNAi和外源性RNAi,并促进特定内源性siRNA的生成,且该功能为线虫特有。其还通过核酸外切酶活性降解siRNA及miRNA,负向调控RNAi。裂殖酵母ERI-1通过降解异染色质相关siRNA的水平,参与调控异染色质的形成。ERI-1在rRNA的加工和成熟中发挥重要作用。此外哺乳动物ERI-1在细胞周期S期末期降解组蛋白mRNA,从而推动细胞进入G2期。本文从结构、功能等方面概述了ERI-1调控多种RNA代谢的机制,探讨了其进化丢失问题和应用前景并对后续研究提出了建议。  相似文献   

6.
RNA干涉(RNAi)技术应用于哺乳动物细胞的研究策略   总被引:5,自引:1,他引:4  
张定校  樊斌  刘榜  李奎 《遗传》2005,27(5):839-844
RNAi作为新近发展起来的基因功能分析技术,近年来在哺乳动物细胞中的研究已取得了长足进展,且有着广泛的应用前景。对RNAi作用机制及RNAi实验操作技术的探讨是目前研究的热点。研究表明,哺乳动物细胞中的RNAi作用模式与植物有所不同。文章对RNAi作用机制、哺乳动物细胞RNAi实验的一般策略(包括靶siRNA序列选择、siRNA获取方法、siRNA转染、RNAi效果检测等)以及最新研究进展进行简述,以供类似工作的参考。  相似文献   

7.
师明磊  赵志虎  王洋  陈惠鹏 《遗传》2009,31(7):683-689
siRNA是一种由siRNA介导的转录后基因沉默。自利用RNAi沉默目的基因获得成功以来, 体内应用RNAi的研究受到高度重视。由于siRNA本身的不稳定性以及体内的复杂环境, siRNA递送的安全性与有效性成为目前关注的重点。文章就目前报道的siRNA体内递送方式进行了综述。  相似文献   

8.
RNA干扰(RNAi)是由小干扰RNA(siRNA)引发的生物细胞内同源基因的转录后基因沉默(PTGS)现象,是一种古老的生物抵抗外在感染的防御机制。RNAi因其在维持基因组稳定、调控基因表达和保护基因组免受外源核酸侵入等方面发挥的重要作用,已被广泛用于探索基因功能、基因治疗和新药的研发。外源导入siRNA引发的RNAi可以特异性抑制病毒的复制与感染,为抗病毒感染治疗开辟了一条新的途径。  相似文献   

9.
dsRNA介导的RNAi普遍存在于各种生物中的一种特异的转录后基因沉默现象。dsRNA在细胞内降解为siRNA是传统RNAi作用中不可缺少的重要环节。新近发现。体外合成siRNA可直接触发RNAisi,尤其是在特异性抑制哺乳动物基因方面,有着广阔的应用前景。  相似文献   

10.
RNA干扰(RNA interference,RNAi)通过转录后基因沉默效应特异性抑制靶基因的表达,其沉默机制的高效性、特异性及稳定性使这项技术成为生物医学领域研究基因治疗的重要工具。阐述RNAi技术的特点和RNAi疗法的现状,特别是多靶小干扰RNA(small interference RNA,siRNA)目前的发展态势及其各种结构性修饰,通过使用这些结构修饰的siRNA提高基因沉默的效率,将有助于提高疗效。但该技术在广泛应用于临床之前,仍存在一些亟待解决的问题与面临的挑战,需进一步研究。  相似文献   

11.
Gene silencing in Caenorhabditis elegans by transitive RNA interference   总被引:5,自引:0,他引:5  
When a cell is exposed to double-stranded RNA (dsRNA), mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi). Here, we provide evidence that dsRNA is amplified in Caenorhabditis elegans to ensure a robust RNAi response. Our data suggest a model in which mRNA targeted by RNAi functions as a template for 5' to 3' synthesis of new dsRNA (termed transitive RNAi). Strikingly, the effect is nonautonomous: dsRNA targeted to a gene expressed in one cell type can lead to transitive RNAi-mediated silencing of a second gene expressed in a distinct cell type. These data suggest dsRNA synthesized in vivo can mediate systemic RNAi.  相似文献   

12.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

13.
RNA interference (RNAi), a sequence-specific mRNA degradation induced by double-stranded RNA (dsRNA), is a common approach employed to specifically silence genes. Experimental RNAi in plant and invertebrate models is frequently induced by long dsRNA. However, in mammals, short RNA molecules are used preferentially since long dsRNA can provoke sequence-independent type I interferon response. A notable exception are mammalian oocytes where the interferon response is suppressed and long dsRNA is a potent and specific trigger of RNAi. Transgenic RNAi is an adaptation of RNAi allowing for inducing sequence-specific silencing upon expression of dsRNA. A decade ago, we have developed a vector for oocyte-specific expression of dsRNA, which has been used to study gene function in mouse oocytes on numerous occasions. This review provides an overview and discusses benefits and drawbacks encountered by us and our colleagues while working with the oocytes-specific transgenic RNAi system.  相似文献   

14.
RNAi在害虫防治中应用的重要进展及存在问题   总被引:2,自引:0,他引:2  
RNAi是目前最有可能应用于害虫绿色防控的新技术。2017年6月,美国环境署(EPA)批准了国际上第一例表达昆虫双链RNA(dsRNA)的抗虫转基因玉米MON87411,掀起了利用RNAi技术进行害虫防治研究新的热潮。但是,目前RNAi在害虫防治中的应用还存在一些问题,例如有效靶标基因筛选和应用策略,鳞翅目昆虫对RNAi的敏感性以及双链RNA在环境中的稳定性等等。本文系统总结了RNA干扰现象发现20年来,该技术在害虫防治领域的研究及应用概况,并对RNAi技术应用的可行性、应用方法、存在问题和目前的一些解决办法进行了比较详细的综述。通过对近期研究结果的综合分析发现,dsRNA进入某些鳞翅目昆虫中肠或血淋巴后,被相关核酸酶降解可能是其RNAi效率较低的首要原因。通过对dsRNA进行脂质体修饰,纳米粒子包埋可以在一定程度上解决dsRNA降解的问题,进而提高RNAi效率。  相似文献   

15.
Larval RNAi in Drosophila?   总被引:2,自引:0,他引:2  
RNA interference (RNAi) has become a common method of gene knockdown in many model systems. To trigger an RNAi response, double-stranded RNA (dsRNA) must enter the cell. In some organisms such as Caenorhabditis elegans, cells can take up dsRNA from the extracellular environment via a cellular uptake mechanism termed systemic RNAi. However, in the fruit fly Drosophila melanogaster, it is widely believed that cells are unable to take up dsRNA, although there is little published data to support this claim. In this study, we set out to determine whether this perception has a factual basis. We took advantage of traditional Gal4/upstream activation sequence (UAS) transgenic flies as well as the mosaic analysis with a repressible cell marker (MARCM) system to show that extracellular injection of dsRNA into Drosophila larvae cannot trigger RNAi in most Drosophila tissues (with the exception of hemocytes). Our results show that this is not due to a lack of RNAi machinery in these tissues as overexpression of dsRNA inside the cells using hairpin RNAs efficiently induces an RNAi response in the same tissues. These results suggest that, while most Drosophila tissues indeed lack the ability to uptake dsRNA from the surrounding environment, hemocytes can initiate RNAi in response to extracellular dsRNA. We also examined another insect, the red flour beetle Tribolium castaneum, which has been shown to exhibit a robust systemic RNAi response. We show that virtually all Tribolium tissues can respond to extracellular dsRNA, which is strikingly different from the situation in Drosophila. Our data provide specific information about the tissues amenable to RNAi in two different insects, which may help us understand the molecular basis of systemic RNAi.  相似文献   

16.
RNA干扰及其应用的研究进展   总被引:1,自引:1,他引:1  
  相似文献   

17.
《Journal of Asia》2020,23(4):1160-1164
Despite extensive research during the past decade elucidating the mechanism of RNA interference (RNAi) in insects, it is not clear how ingested or injected double-stranded RNA (dsRNA) triggers RNAi response in the whole body or even its progeny, which is referred to as systemic RNAi. In the present study, we aim to understand how the dsRNA delivered into cells causes systemic RNAi using Colorado potato beetle cells (Lepd-SL1). We first tested if dsRNA treatment induces systemic RNAi in Lepd-SL1 cells. Exposure of a new batch of Lepd-SL1 cells to the conditioned medium where Lepd-SL1 cells treated with dsRNA targeting inhibitor of apoptosis were grown for 6 h induced apoptosis in these new batch of cells. We hypothesized the exosomes in the conditioned medium are responsible for RNAi-inducing effect. To test this hypothesis, we isolated exosomes from the conditioned medium from Lepd-SL1 cells that had been treated with dsGFP (dsRNA targeting gene coding for green fluorescent protein) or dsLuc (dsRNA targeting gene coding for the luciferase) were grown. RNA present in the purified exosomes was analyzed to check if long dsRNA or siRNA is accumulated in them. The results from the electrophoretic mobility shift assay clearly showed that the long dsRNAs are present in the exosomes. By knockdown of candidate genes involved in endosome recycling and generation pathways, we found that Rab4 and Rab35 are involved in exosome production and transport.  相似文献   

18.
The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects.  相似文献   

19.
In insect reverse genetics, dietary delivery of interfering RNAs is a practical approach in nonmodel species, such as thrips, whose small size, and feeding behavior restricts the use of other delivery methods. In a laboratory context, an unsuitable diet could confound the interpretation of an RNA interference (RNAi) phenotype, however well-formulated artificial diets can minimize experimental variability, reduce the need for insect handling, and can further be used for roles, such as delivering double-strand RNA (dsRNA)-expressing recombinant bacteria. In this study, artificial diets for oral delivery of dsRNA were developed for two important pest thrips species, western flower thrips (Frankliniella occidentalis) and onion thrips (Thrips tabaci), with the goal of (a) stimulating feeding behavior, (b) supporting optimal growth rates of dsRNA-expressing symbiotic bacteria, and (c) nutritionally supporting the thrips for sufficient periods to observe RNAi phenotypes. The efficacy of artificial diets for ingesting “naked” dsRNA or dsRNA-expressing symbionts and dsRNA delivery via host plant uptake was evaluated. Compared with previously published diet formulations, new combinations based on tryptone, yeast, and soy were superior for enhancing feeding and longevity. However, simply adding “naked” dsRNA to an artificial diet was an unreliable form of RNAi delivery in our hands due to dsRNA degradation. Delivery via host plants was more successful, and the new diet formulation was suitable for symbiont-mediated dsRNA delivery, which we believe is the most convenient approach for large-scale knockdown experiments. This study, therefore, provides alternative methodologies for thrips rearing, dietary RNAi delivery, and insights into the challenges of performing dietary RNAi in nonmodel insects.  相似文献   

20.
RNA interference (RNAi) refers to the selective degradation of mRNA induced by double-stranded RNA (dsRNA), first discovered in Caenorhabditis elegans. Homology-dependent silencing phenomena related to RNAi have been observed in many species from all eukaryotic kingdoms. RNAi and related mechanisms share several conserved components. The hallmark of these phenomena is the presence of short dsRNA molecules (21-25 bp long), termed short interfering RNA (siRNA), which are generated from dsRNA by the activity of Dicer, a specific type III RNAse. These molecules serve as a template for the recognition and cleavage of the cognate mRNA. As it is beyond the scope of a single review to cover all aspects of RNAi, this review will focus on certain steps of the pathway relevant to mammals and on the use of long dsRNA to specifically silence genes in mammalian cells permissive to this technique, such as oocytes and early embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号