首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

2.
Base pairing between U2 snRNA and the branchpoint sequence (BPS) is essential for pre-mRNA splicing. Because the metazoan BPS is short and highly degenerate, this interaction alone is insufficient for specific binding of U2 snRNP. The splicing factor U2AF binds to the pyrimidine tract at the 3′ splice site in the earliest spliceosomal complex, E, and is essential for U2 snRNP binding in the spliceosomal complex A. We show that the U2 snRNP protein SAP 155 UV cross-links to pre-mRNA on both sides of the BPS in the A complex. SAP 155’s downstream cross-linking site is immediately adjacent to the U2AF binding site, and the two proteins interact directly in protein-protein interaction assays. Using UV cross-linking, together with functional analyses of pre-mRNAs containing duplicated BPSs, we show a direct correlation between BPS selection and UV cross-linking of SAP 155 on both sides of the BPS. Together, our data are consistent with a model in which U2AF binds to the pyrimidine tract in the E complex and then interacts with SAP 155 to recruit U2 snRNP to the BPS.  相似文献   

3.
Highly purified mammalian spliceosomal complex B contains more than 30 specific protein components. We have carried out UV cross-linking studies to determine which of these components directly contacts pre-mRNA in purified prespliceosomal and spliceosomal complexes. We show that heterogeneous nuclear ribonucleoproteins cross-link in the nonspecific complex H but not in the B complex. U2AF65, which binds to the 3' splice site, is the only splicing factor that cross-links in purified prespliceosomal complex E. U2AF65 and the U1 small nuclear ribonucleoprotein particle (snRNP) are subsequently destabilized, and a set of six spliceosome-associated proteins (SAPs) cross-links to the pre-mRNA in the prespliceosomal complex A. These proteins require the 3' splice site for binding and cross-link to an RNA containing only the branch site and 3' splice site. Significantly, all six of these SAPs are specifically associated with U2 snRNP. These proteins and a U5 snRNP component cross-link in the fully assembled B complex. Previous work detected an ATP-dependent, U2 snRNP-associated factor that protects a 30- to 40-nucleotide region surrounding the branchpoint sequence from RNase digestion. Our data indicate that the six U2 snRNP-associated SAPs correspond to this branchpoint protection factor. Four of the snRNP proteins that are in intimate contact with the pre-mRNA are conserved between Saccharomyces cerevisiae and humans, consistent with the possibility that these factors play key roles in mediating snRNA-pre-mRNA interactions during the splicing reaction.  相似文献   

4.
5.
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.  相似文献   

6.
Using a protein blotting method for the detection of nucleic acid binding proteins, we have identified in HeLa cell nuclear extracts an intron binding protein (IBP) that selectively recognizes the 3' splice site region of mammalian pre-mRNAs. The binding site was accurately delineated using oligonucleotides complementary to human beta-globin pre-mRNA. It spans the 3' splice site AG dinucleotide and the crucial polypyrimidine stretch upstream, but includes neither the branchpoint nor the lariat structure. Although the technique used here shows that the binding specificity is an intrinsic property of IBP and does not depend on snRNA-pre-mRNA interactions, it comigrates with U5 snRNP and is immunoprecipitated by anti-Sm antibody. This strongly suggests that IBP belongs to U5 snRNP. We propose that it is involved in one of the earliest steps of the splicing reaction by mediating the interaction of U5 snRNP with the 3' splice site.  相似文献   

7.
The splicing factor U2AF is required for the recruitment of U2 small nuclear RNP to pre-mRNAs in higher eukaryotes. The 65-kDa subunit of U2AF (U2AF(65)) binds to the polypyrimidine (Py) tract preceding the 3' splice site, while the 35-kDa subunit (U2AF(35)) contacts the conserved AG dinucleotide at the 3' end of the intron. It has been shown that the interaction between U2AF(35) and the 3' splice site AG can stabilize U2AF(65) binding to weak Py tracts characteristic of so-called AG-dependent pre-mRNAs. U2AF(35) has also been implicated in arginine-serine (RS) domain-mediated bridging interactions with splicing factors of the SR protein family bound to exonic splicing enhancers (ESE), and these interactions can also stabilize U2AF(65) binding. Complementation of the splicing activity of nuclear extracts depleted of U2AF by chromatography in oligo(dT)-cellulose requires, for some pre-mRNAs, only the presence of U2AF(65). In contrast, splicing of a mouse immunoglobulin M (IgM) M1-M2 pre-mRNA requires both U2AF subunits. In this report we have investigated the sequence elements (e.g., Py tract strength, 3' splice site AG, ESE) responsible for the U2AF(35) dependence of IgM. The results indicate that (i) the IgM substrate is an AG-dependent pre-mRNA, (ii) U2AF(35) dependence correlates with AG dependence, and (iii) the identity of the first nucleotide of exon 2 is important for U2AF(35) function. In contrast, RS domain-mediated interactions with SR proteins bound to the ESE appear to be dispensable, because the purine-rich ESE present in exon M2 is not essential for U2AF(35) activity and because a truncation mutant of U2AF(35) consisting only of the pseudo-RNA recognition motif domain and lacking the RS domain is active in our complementation assays. While some of the effects of U2AF(35) can be explained in terms of enhanced U2AF(65) binding, other activities of U2AF(35) do not correlate with increased cross-linking of U2AF(65) to the Py tract. Collectively, the results argue that interaction of U2AF(35) with a consensus 3' splice site triggers events in spliceosome assembly in addition to stabilizing U2AF(65) binding, thus revealing a dual function for U2AF(35) in pre-mRNA splicing.  相似文献   

8.
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.  相似文献   

9.
10.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

11.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

12.
S Teigelkamp  A J Newman    J D Beggs 《The EMBO journal》1995,14(11):2602-2612
Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8. PRP8 protein interacts with a region of at least eight exon nucleotides at the 5' splice site and a minimum of 13 exon nucleotides and part of the polypyrimidine tract in the 3' splice site region. Crosslinking of PRP8 to mutant and duplicated 3' splice sites indicated that the interaction is not sequence specific, nor does it depend on the splice site being functional. Binding of PRP8 to the 5' exon was established before step 1 and to the 3' splice site region after step 1 of splicing. These interactions place PRP8 close to the proposed catalytic core of the spliceosome during both transesterification reactions. To date, this represents the most extensive mapping of the binding site(s) of a splicing factor on the substrate RNA. We propose that the large binding sites of PRP8 stabilize the intrinsically weaker interactions of U5 snRNA with both exons at the splice sites for exon alignment by the U5 snRNP.  相似文献   

13.
We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively. The effect of the mutation, which generates a tandem of two consecutive AG dinucleotides at the 3' splice site, can be suppressed by increasing the distance between the AGs, mutating the natural 3' splice site AG or increasing the uridine content of the Py-tract at a position distal from the 3' splice site. The suppressive effects of these additional mutations correlate with increased recruitment of U2 snRNP but not with U2AF binding, again suggesting that the strict architecture of Fas intron 5 3' splice site region is tuned to regulate alternative exon inclusion through modulation of U2 snRNP assembly after U2AF binding.  相似文献   

14.
Fas exon 6 can be included or skipped to generate mRNAs encoding, respectively, a membrane bound form of the receptor that promotes apoptosis or a soluble isoform that prevents programmed cell death. We report that the apoptosis-inducing protein TIA-1 promotes U1 snRNP binding to the 5' splice site of intron 6, which in turn facilitates exon definition by enhancing U2AF binding to the 3' splice site of intron 5. The polypyrimidine tract binding protein (PTB) promotes exon skipping by binding to an exonic splicing silencer and inhibiting the association of U2AF and U2 snRNP with the upstream 3' splice site, without affecting recognition of the downstream 5' splice site by U1. Remarkably, U1 snRNP-mediated recognition of the 5' splice site is required both for efficient U2AF binding and for U2AF inhibition by PTB. We propose that TIA-1 and PTB regulate Fas splicing and possibly Fas-mediated apoptosis by targeting molecular events that lead to exon definition.  相似文献   

15.
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.  相似文献   

16.
A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly   总被引:125,自引:0,他引:125  
B Ruskin  P D Zamore  M R Green 《Cell》1988,52(2):207-219
Pre-mRNA splicing complex assembly is mediated by two specific pre-mRNA-snRNP interactions: U1 snRNP binds to the 5' splice site and U2 snRNP binds to the branch point. Here we show that unlike a purified U1 snRNP, which can bind to a 5' splice site, a partially purified U2 snRNP cannot interact with its target pre-mRNA sequence. We identify a previously uncharacterized activity, U2AF, that is required for the U2 snRNP-branch point interaction and splicing complex formation. Using RNA substrate exclusion and competition assays, we demonstrate that U2AF binds to the 3' splice site region prior to the U2 snRNP-branch point interaction. This provides an explanation for the necessity of the 3' splice site region in U2 snRNP binding and, hence, the first step of splicing.  相似文献   

17.
Early recognition of pre-mRNA during spliceosome assembly in mammals proceeds through the association of U1 small nuclear ribonucleoprotein particle (snRNP) with the 5' splice site as well as the interactions of the branch binding protein SF1 with the branch region and the U2 snRNP auxiliary factor U2AF with the polypyrimidine tract and 3' splice site. These factors, along with members of the SR protein family, direct the ATP-independent formation of the early (E) complex that commits the pre-mRNA to splicing. We report here the observation in U2AF-depleted HeLa nuclear extract of a distinct, ATP-independent complex designated E' which can be chased into E complex and itself commits a pre-mRNA to the splicing pathway. The E' complex is characterized by a U1 snRNA-5' splice site base pairing, which follows the actual commitment step, an interaction of SF1 with the branch region, and a close association of the 5' splice site with the branch region. These results demonstrate that both commitment to splicing and the early proximity of conserved sequences within pre-mRNA substrates can occur in a minimal complex lacking U2AF, which may function as a precursor to E complex in spliceosome assembly.  相似文献   

18.
As demonstrated by RNase T1 protection assays at 0 degrees C without ATP, U1 and U5 snRNPs purified by isopycnic centrifugation in cesium chloride bind to the 5' and 3' splice sites of human beta-globin pre-mRNA, respectively. We also devised a saturation-complementation assay and have found that this purified U5 snRNP, unlike U1, successfully competes with snRNP-free fractions of nuclear proteins which inhibit spliceosome assembly and splicing. Restoration of activity requires intact U5 snRNA and correlates with the presence of the 100 Kd intron binding protein (IBP) which we have previously characterized (Tazi et al., 1986, Cell 47, 755-766). Our results are compatible with a model in which the recognition of the 3' splice site by IBP-U5 snRNP is one of the earliest events of the spliceosome assembly. It could organize the structure of the 3' splice site region of the human beta-globin like pre-mRNAs. However, on the basis of results showing that beta-globin and major late adenovirus seem to have different requirements with respect to IBP-U5 snRNP, it appears that some pre-mRNAs could have a native structure that necessitates less if at all IBP-U5.  相似文献   

19.
20.
Alternative RNA processing of human calcitonin/CGRP pre-mRNA is regulated by an intronic enhancer element. Previous studies have demonstrated that multiple sequence motifs within the enhancer and a number of trans-acting factors play critical roles in the regulation. Here, we report the identification of TIAR as a novel player in the regulation of human calcitonin/CGRP alternative RNA processing. TIAR binds to the U tract sequence motif downstream of a pseudo 5' splice site within the previously characterized intron enhancer element. Binding of TIAR promotes inclusion of the alternative 3'-terminal exon located more than 200 nucleotides upstream from the U tract. In cells that preferentially include this exon, overexpression of a mutant TIAR that lacks the RNA binding domains suppressed inclusion of this exon. In this report, we also demonstrate an unusual novel interaction between U6 snRNA and the pseudo 5' splice site, which was shown previously to bind U1 snRNA. Interestingly, TIAR binding to the U tract sequence depends on the interaction of not only U1 but also U6 snRNA with the pseudo 5' splice site. Conversely, TIAR binding promotes U6 snRNA binding to its target. The synergistic relationship between TIAR and U6 snRNA strongly suggests a novel role of U6 snRNP in regulated alternative RNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号