首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large fraction of circulating sickle red cells contain one or more large vesicles which are not found in normal erythrocytes. These vesicles contain very high levels of Ca2+, and probably account for the long-known elevation of cellular Ca2+ in sickle cells. These vesicles contain the plasma membrane CaATPase and leak Ca2+ by a nitrendipine-sensitive pathway. The question of whether an abnormal endocytic process occurs in sickle cells which could give rise to these vesicles was examined using the nonspecific endocytic marker Lucifer yellow (LY). The kinetics of formation of LY-labeled endocytic vesicles in sickle cells includes a slow component which is not found in normal (or sickle) reticulocytes. In addition, the number of sickle cells in which endocytosis can be demonstrated with this nonspecific marker consistently exceeds the number which can be labeled with markers of the receptor-mediated endocytic process. The results suggest that a slow, abnormal endocytosis takes place in sickle cells which may be the source of the Ca2(+)-containing vesicles, and therefore of the elevated Ca2+ levels characteristic of the circulating cells in this disease.  相似文献   

2.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

3.
A Golgi vesicle preparation isolated from the mammary tissue of rats in mid-lactation has been shown to contain the caseins of rat milk. These proteins were phosphorylated when the Golgi vesicles were incubated in the presence of [gamma-32P]ATP. Although this phosphorylation occurred when the physical integrity of the vesicles was maintained, it was markedly increased when the membrane structure was disrupted by hypoosmotic conditions or by use of detergents. The kinase responsible has been shown to be responsive to the intravesicular concentration of Ca2+ and to the extravesicular concentration of Mg2+. These results have been interpreted in terms of a model suggesting a transmembrane location for the enzyme with binding sites on the cytosolic membrane face for Mg2+ and possibly also for ATP and on the luminal surface for Ca2+ and the caseins. Others have postulated that the assembly of caseins into micelles occurs in Golgi vesicles and requires both prior phosphorylation of the proteins and the presence of Ca2+. In this investigation we demonstrate that treatments which increase the intravesicular casein phosphorylation also alter the Ca2+ balance within the vesicle lumen. These results are discussed in relation to the ATP-dependent accumulation of Ca2+ by the mammary gland Golgi vesicles.  相似文献   

4.
Purified secretory vesicles isolated from bovine neurohypophyses take up Na+ under the same circumstances where an efflux of Ca2+ takes place, suggesting a Na+/Ca2+ exchange. Potassium cannot substitute for Na+ in this process. Also, a Ca2+/Ca2+ exchange can occur. Inhibiting the latter process by Mg2+ allowed to estimate an apparent KM of 0.7 microM free Ca2+ and a maximal uptake of 1.5 nmol X mg protein-1 X min-1 Ca2+ in exchange for Na+. The vesicles did not contain plasma membrane marker (Na+/K+ ATPase) as shown by distribution analyses on the density gradients on which they were purified. Similarly, distribution studies also showed that no other ATPase activity could be detected in the purified vesicle fraction. It is concluded that a Na+/Ca2+ exchange is operating across the secretory vesicle membrane and that it is not directly dependent on ATP hydrolysis.  相似文献   

5.
P Gmaj  H Murer    R Kinne 《The Biochemical journal》1979,178(3):549-557
Basal-lateral-plasma-membrane vesicles and brush-border-membrane vesicles were isolated from rat kidney cortex by differential centrifugation followed by free-flow-electrophoresis. Ca2+ uptake into these vesicles was investigated by a rapid filtration method. Both membranes show a considerable binding of Ca2+ to the vesicle interior, making the analysis of passive fluxes in uptake experiments difficult. Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin. The basal-lateral plasma membranes contain in addition a Na+/Ca2+-exchange system which mediates a probably rheogenic counter-transport of Ca2+ and Na+ across the basal cell border. The latter system is probably involved in the secondary active Na+-dependent and ouabain-inhibitable Ca2+ reabsorption in the proximal tubule, the ATP-driven system is probably more important for the maintenance of a low concentration of intracellular Ca2+.  相似文献   

6.
Regulation of calcium content in bovine spermatozoa   总被引:2,自引:0,他引:2  
Plasma membrane vesicles isolated from bovine epididymal and ejaculated spermatozoa have widely different capabilities for transporting Ca2+. Spermatozoa were ruptured by nitrogen cavitation, and the plasma membrane fraction was harvested after low speed and sucrose gradient centrifugation; purity was assessed by marker enzyme analyses, electron microscopy, and sedimentation properties. Plasma membrane vesicles isolated from epididymal sperm accumulate Ca2+ passively at a faster rate and to a greater extent than vesicles prepared from ejaculated sperm. Ca2+ transport across bovine sperm plasma membranes is an ATP-independent, Na+-dependent process that obligatorily exchanges intravesicular Na+ for external Ca2+. The rate of Na+/Ca2+ exchange is significantly lower in ejaculated sperm vesicles than in those of epididymal sperm. Bovine plasma membranes contain little or no Ca2+-dependent ATPase activity. It is suggested that, at the time of ejaculation, calcium flux into bovine sperm is prevented by the interaction of the plasma membrane with putative factors in seminal fluid that specifically interfere with Na+/Ca2+ exchange. We have isolated a protein from seminal plasma that prevents calcium accumulation by bovine epididymal sperm (Rufo, G. A., Jr., Singh, J. P., Babcock, D. F., and Lardy, H. A. (1982) J. Biol. Chem. 257, 4627-4632). A protein with properties resembling those of the seminal calcium transport inhibitor is found on the membrane vesicles from ejaculated sperm but not on membranes from epididymal sperm. We conclude that this protein binds strongly to the plasma membrane of bovine sperm and is responsible for preventing calcium uptake by ejaculated sperm.  相似文献   

7.
Staining of sickle cells with the fluorescent probes chlortetracycline (a Ca2+ probe) and diindocarbocyanine (a general membrane probe) revealed the presence of Ca2+-containing vesicles which are not found in normal erythrocytes. These vesicles increase in number upon deoxygenation, and are apparently formed by endocytosis, as judged by the use of the extracellular fluorescent probe lucifer yellow. The presence of vesicles is not restricted to any particular morphological or density class of cells in the general population.  相似文献   

8.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

9.
Sidedness of the effect of K+ on Ca transport by the sarcoplasmic reticulum Ca pump reconstituted into soybean phospholipid vesicles was investigated. The reconstituted vesicles which sustained a high rate of Ca transport even in the absence of Ca-precipitating anions exhibited low passive permeabilities to 42K+, 86Rb+, or 45Ca2+. Evidence was presented that K+ activated the Ca pump on the external surface of the vesicles and that it was not taken up by the vesicles during the pump activity. In the presence of high externally added K+, the reconstituted vesicles preloaded with K+ exhibited a significantly higher Ca transport activity than the vesicles preloaded with Tris+ but not the ones preloaded with Li+. Ca transport by the K+-loaded vesicles was accompanied by a small amount of K+ efflux, which corresponded to about 20% of the amount of Ca+ taken up. Since the intravesicular K+ did not affect the turnover of the ADP-insensitive component (E2P) of the phosphoenzyme intermediate formed during the pump cycle, it was concluded that the intravesicular K+ stimulated the Ca pump activity indirectly by compensating the charge imbalance caused by the electrogenic Ca2+ movement. These results thus indicate that K+ activates the Ca pump only on the cytoplasmic side of the sarcoplasmic reticulum membrane, but it is not obligately transported across the membrane under conditions where K+ fully activates the Ca pump.  相似文献   

10.
The Ca2+-mobilizing action of thrombin was demonstrated in a cell-free platelet membrane system consisting of open sheets of plasma membrane plus sealed membrane vesicles that accumulate Ca2+ and release Ca2+ in response to IP3. Thrombin plus GTP, acting on plasma membrane (not vesicles), produced a soluble factor (destroyed by alkaline phosphatase) that released Ca2+ from the vesicles. This effect of thrombin/GTP was blocked by a monoclonal antibody that binds to vesicles and prevents Ca2+ release by IP3. Pertussis toxin plus NAD ADP-ribosylated plasma membrane polypeptides of 39 and 41 kDa and blocked Ca2+ release by thrombin/GTP, but not by IP3.  相似文献   

11.
A sensitive method which utilizes fluorescence energy transfer to assay Ca2+ -or Mg2+ -mediated fusion of phospholipid vesicles is reported. More than 85% quenching results when phosphatidylserine vesicles labelled with dansyl phosphatidylethanolamine (donor) are fused with vesicles labelled with rhodamine phosphatidylethanolamine (acceptor) in the presence of 5 mM CaCl2 or 10 mM MgCl2. Higher concentrations of divalent cations are required to obtain maximal quenching when phosphatidylserine is partially replaced with phosphatidylethanolamine or phosphatidylcholine. The rate of vesicle fusion is dependent upon the concentrations of both cation and vesicles. Maximum quenching occurs within 5 min using phosphatidylserine vesicles and 5 mM Ca2+, but quenching is incomplete even after 20 h with 0.8--2 mM Ca2+. This probably reflects the heterogeneous size distribution of these vesicles, since the extent of fusion was found to correlated with vesicle size. Binding of antibody to membrane-localized phenobarbital hapten effectively blocks Ca2+ -mediated vesicle fusion. This effect can be inhibited by preincubation of the antibody with phenobarbital. Leakage of tempocholine from intact vesicles induced by 5 mM Ca2+ occurs even when fusion is prevented by bound antibody. This demonstrates that fusion is not a necessary requirement for Ca2+ -induced leakage.  相似文献   

12.
Calcium transport was investigated in membrane vesicles prepared from the oral bacterium Streptococcus sanguis. Procedures were devised for the preparation of membrane vesicles capable of accumulating 45Ca2+. Uptake was ATP dependent and did not require a proton motive force. Calcium transport in these vesicles was compared with 45Ca2+ accumulation in membrane vesicles from Streptococcus faecalis and Escherichia coli. The data support the existence of an ATP-driven calcium pump in S. sanguis similar to that in S. faecalis. This pump, which catalyzes uptake into membrane vesicles, would be responsible for extrusion of calcium from intact cells.  相似文献   

13.
Calcium pump of the plasma membrane is localized in caveolae   总被引:36,自引:14,他引:22       下载免费PDF全文
《The Journal of cell biology》1993,120(5):1147-1157
The Ca2+ pump in the plasma membrane plays a key role in the fine control of the cytoplasmic free Ca2+ concentration. In the present study, its subcellular localization was examined with immunocytochemical techniques using a specific antibody generated against the erythrocyte membrane Ca2+ pump ATPase. By immunofluorescence microscopy of cultured cells, the labeling with the antibody was seen as numerous small dots, often distributed in linear arrays or along cell edges. Immunogold EM of cryosections revealed that the dots correspond to caveolae, or smooth invaginations of the plasma membrane. The same technique applied to mouse tissues in vivo showed that the Ca2+ pump is similarly localized in caveolae of endothelial cells, smooth muscle cells, cardiac muscle cells, epidermal keratinocytes and mesothelial cells. By quantitative analysis of the immunogold labeling, the Ca2+ pump in capillary endothelial cells and visceral smooth muscle cells was found to be concentrated 18-25-fold in the caveolar membrane compared with the noncaveolar portion of the plasma membrane. In renal tubular and small intestinal epithelial cells, which have been known to contain the Ca2+ pump but do not have many caveolae, most of the labeling was randomly distributed in the basolateral plasma membrane, although caveolae were also positively labeled. The results demonstrate that the caveolae in various cells has the plasmalemmal Ca2+ pump as a common constituent. In conjunction with our recent finding that an inositol 1,4,5-trisphosphate receptor-like protein exists in the caveolae (Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa. 1992. J. Cell Biol. 119:1507-1513), it is inferred that the smooth plasmalemmal invagination is an apparatus specialized for Ca2+ intake and extrusion from the cytoplasm.  相似文献   

14.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

15.
In intact guinea pig parietal cells, gastrin or compound 48/80 caused an initial increase in cytosolic Ca2+ concentration and subsequent acid secretion, owing to release of intracellulary stored Ca2+ besides the Ca2+ entry from the extracellular space. However, the maximum gastrin-induced Ca2+ entry into the cell was delayed by 60 min, a time which coincided with sustained acid secretion (by gastrin) that was dependent on medium Ca2+. On the other hand, there are two ATP-dependent Ca2+-removal systems detected in either plasmalemma or smooth surfaced membrane besides that of mitochondria. The plasmalemmal Ca2+-removal system was dependent on calmodulin. Smooth surfaced membrane vesicles caused an ATP-dependent Ca2+ uptake that was almost similar to that taken by saponin-permiabilized cell. In this system (permeable cell), myo-inositol 1,4,5-triphosphate (InsP3) caused the release of ATP-accumulated Ca2+ into the cytosol, suggesting an ATP-dependent and InsP3-sensitive Ca2+ pool(s) is in or near the smooth surfaced membranes. The ATP-dependent Ca2+ uptake by vesicles was markedly enhanced by the stimulation of cells with gastrin, compound 48/80, or EDTA. The increase of this Ca2+ uptake in stimulated cells by plasmalemmal vesicles exceeded that by smooth surfaced ones. The increase of the Ca2+ uptake by plasmalemmal vesicles was abolished by the cease of intracellular Ca2+ release without Ca2+ entry. In addition, gastrin or compound 48/80 evoked an early Ca2+ efflux across the plasma membrane owing to a pump that was independent of medium Ca2+ in intact cells. These results suggest that in the first acid secretion by gastrin or others, the Ca2+ released, which may be derived from an ATP-dependent and InsP3-sensitive Ca2+ pool, is mainly pumped out by the plasmalemmal Ca2+-removal system rather than the intracellular Ca2+-removal system; whereas the sustained acid secretion by gastrin required medium Ca2+ and in this phase, Ca2+ efflux across the plasma membrane became lower, suggesting that an ATP-dependent Ca2+ pool may be replenished by Ca2+ entering from the extracellular space.  相似文献   

16.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

17.
Divalent cation ATPases were prepared from rat brain synaptic vesicles, synaptosomal plasma membranes, and plasma membranes from the brain stem and sciatic nerve and tested for optimal stimulation by Mn2+, Mg2+, or Ca2+. ATPase in the synaptic vesicle subfraction was optimally stimulated by Mn2+. All plasma membrane preparations were optimally stimulated by Mg2+. Separate Mn2+ and Mg2+ ATPases could not be distinguished by either chemical inactivation or substrate preference criteria. Mn2+ stimulated ATPase in the micromolar range and it is suggested that Mn2+ interaction with ATPase may be of physiological and/or toxicological importance by being related to the cellular metabolism of this element.  相似文献   

18.
Type-I diabetes is associated with a decrease in magnesium content in various tissues, including liver. We have reported that hepatocytes from streptozotocin-injected rats have lost the ability to accumulate Mg2+ following hormonal stimulation. To assess whether the defect is inherent to the Mg2+ transport mechanism located in the hepatocyte cell membrane, plasma membrane vesicles were purified from diabetic livers. Diabetic plasma membranes do not retain intravesicular Mg2+ as tightly as vesicles purified from livers of age-matched non-diabetic rats. In addition, the amount of intravesicular Mg2+ these vesicles exchange for extravesicular Na+ or Ca2+ is 2-3-fold larger than in non-diabetic vesicles. The partition of Ca2+/Mg2+ and Na+/Mg2+ exchange mechanisms in the apical and basolateral domains of liver plasma membrane is maintained under diabetic conditions, although the Na+/Mg2+ exchanger in diabetic basolateral membranes has lost the ability to operate in reverse and favor an accumulation of extravesicular Mg2+ within the vesicles in exchange for entrapped Na+. These data indicate the occurrence of a major alteration in Mg2+ transport across the hepatocyte membrane, which can explain, at least in part, the decrease in liver magnesium content observed in diabetic animals and patients.  相似文献   

19.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

20.
In the present study, we investigated the role of cAMP-dependent protein kinase in the process of Ca2+ uptake and release from platelet-derived membrane vesicles enriched in the dense tubular system. It was found that these membrane vesicles contain endogenous cAMP-dependent protein kinase and that stimulation of protein kinase by cAMP resulted in the phosphorylation of a single protein band (22 kDa). Addition of cAMP-dependent protein kinase produced effects on vesicle Ca2+ accumulation which were dependent on the Ca2+ concentration in the incubation medium. Specifically, at low extravesicular Ca2+ concentrations, cAMP-dependent protein kinase (10-100 micrograms/ml) produced a dose-dependent stimulation of Ca2+ uptake, however, a similar stimulation was not observed at high extravesicular Ca2+ concentrations. When endogenous protein kinase was blocked by the addition of protein kinase inhibitor, (2-160 nM) there was a dose-dependent inhibition of Ca2+ uptake at both low and high concentrations of extravesicular Ca2+. Furthermore, the addition of protein kinase inhibitor at steady state caused a rapid and dose-dependent release of vesicle-accumulated Ca2+. Studies on the phosphorylation profile of vesicle protein indicated that protein kinase inhibitor (80 and 160 nM) was capable of inhibiting the phosphorylation of the 22-kDa protein within 15 s. Finally, the ability of thromboxane A2 to cause Ca2+ release was inhibited by the addition of cAMP-dependent protein kinase (1 mg/ml). These findings suggest that cAMP-dependent protein kinase is not only a major determinant in the accumulation of Ca2+ by the dense tubular system, but may play an important role in the process of intraplatelet Ca2+ release by physiologic agents such as thromboxane A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号