首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

2.
3.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

4.
Changes of intracellular free Mg2+ concentration ([Mg2+]i) in human amnion cells induced by superoxide anion were determined using a highly Mg(2+)-sensitive fluorescent dye Mg(2+)-fura2 or Mg(2+)-indol. Superoxide anion, produced by addition of xanthine oxidase to hypoxanthine, induced decrease of [Mg2+]i. The decrease was significantly inhibited by an anion channel blocker, 4,4'diisothiocyano-2,2' disulfonic acid stilbene (DIDS). Superoxide dismutase (SOD), injected into cells by cell fusion, also inhibited the change of [Mg2+]i, but catalase did not. Superoxide anion induced prompt increase of intracellular pH (pHi) as well as decrease of [Mg2+]i and subsequently activated the increase of intracellular free Ca2+ ([Ca2+]i) and the release of arachidonate. In contrast to superoxide anion, NH4Cl which induces increase of pHi in amnion cells increased [Mg2+]i. The elevation of basal level of [Mg2+]i by Mg(2+)-ionophore inhibited the change of [Ca2+]i and the release of arachidonate induced by superoxide anion. These results suggest that superoxide anion, transported through anion channels into cells, decreases [Mg2+]i directly, not due to a pH-effect and that the decrease of [Mg2+]i may regulate biological functions of the cells via increase of [Ca2+]i.  相似文献   

5.
Control of photosynthesis by Mg 2+   总被引:5,自引:0,他引:5  
  相似文献   

6.
Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport   总被引:1,自引:0,他引:1  
Mg2+ efflux from Mg2+-preloaded chicken erythrocytes is caused by an electroneutral Na+/Mg2+ antiport. It depends specifically on extracellular Na+, according to Michaelis-Menten kinetics (Km = 25 mM), and is reversibly noncompetitively inhibited by amiloride (Ki = 0.59 mM). In contrast to Na+/H+ antiport, Li+, Ca2+ and N-ethylmaleimide do not interfere with Na+/Mg2+ antiport. The Na+/Mg2+ antiport is driven by the intracellular/extracellular Mg2+ gradient.  相似文献   

7.
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells.  相似文献   

8.
High-conductance K+ channels are known to be activated by internal Ca2+ and membrane depolarization. The effects of changes in internal Mg2+ concentration have now been investigated in patch-clamp single-channel current experiments on excised membrane fragments from mouse acinar cells. It is shown that Mg2+ in the concentration range 10(-6)-10(-3) M evokes a dose-dependent K+ channel activation at a constant Ca2+ concentration of 10(-8) M. The demonstration that changes in [Mg2+]i between 2.5 X 10(-4) and 1.13 X 10(-3) M has effects on the channel open-state probability indicates that fluctuations in [Mg2+]i in intact cells may influence the control of channel opening.  相似文献   

9.
10.
Interaction of DNA with eukaryotic cells under conditions similar to those providing DNA adsorption onto liposomes was studied. It was revealed that mouse fibroblasts (line A9) and myeloma cells bind phage and plasmid DNA in 0.3 M sucrose solution containing Mg2+-ions. Additional pretreatment of the cells by trypsin did not affect DNA adsorption efficiency. The major part of the adsorbed DNA recovered by salt treatment of the cells, but 10-15% of DNA was found to be irreversible. Up to 50% of the irreversibly bound DNA molecules retain their linear size after treatment of cells with DNAse I. Efficiencies of DNA adsorption and irreversibly binding depend on the concentration of Mg2+ in the medium. The process of DNA irreversible binding is not inhibited by drugs affecting cell metabolism. It is assumed that DNA adsorbs onto the phospholipid domains of the cell membrane, and part of the adsorbed DNA is taken up into the interior of the cells.  相似文献   

11.
The time-course of 45Ca2+ influx into yeast cells was measured under non-steady-state conditions obtained by preincubating the cells in a Ca2+-free medium containing glucose and buffer. Two components were distinguished: a saturable component which reached a steady-state after about 40 s of 45Ca2+ uptake and a linear increase in cellular 45Ca2+ starting after 60-90 s. Using differential extraction methods it was determined that after 20 s of uptake, 45Ca2+ was localized in the cytoplasmic pool and in bound form with no 45Ca2+ in the vacuole. After 3 min most of the cellular 45Ca2+ was concentrated in the vacuole and in bound form. The initial rate of 45Ca2+ uptake under non-steady-state conditions thus measured 45Ca2+ transport across the plasma membrane without interference by vacuolar uptake. The effect of membrane potential (delta psi) on this transport was investigated in cells depleted of ATP. A high delta psi was produced by preincubating the cells with trifluoperazine (TFP) and subsequently washing the cells free from TFP. Substantial 45Ca2+ influx was measured in the absence of metabolic energy in cells with a high delta psi. Below a threshold value of -69.5 mV the logarithms of the initial rate of 45Ca2+ influx and of the steady-state level of the first component were linear with respect to delta psi. It is suggested that 45Ca2+ influx across the plasma membrane is mediated by channels which open when delta psi is below a threshold value. The results indicated that Ca2+ influx across the plasma membrane was driven electrophoretically by delta psi.  相似文献   

12.
Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes   总被引:1,自引:0,他引:1  
T Günther  J Vormann 《FEBS letters》1989,247(2):181-184
Net Mg2+ efflux from Mg2+-loaded human erythrocytes was maximal after reincubation in sucrose. Net Mg2+ efflux was not inhibited by furosemide or bumetanide and, therefore, was not performed by the (Na,K,Cl)- or (K,Cl)-cotransport system. A component of net Mg2+ efflux was inhibited by extracellular NaC1, KCl, LiCl, choline Cl and SITS, in analogy to the inhibition of net Cl- and SITS. Therefore, it was concluded that net Mg2+ efflux is dependent on net Cl- efflux for charge compensation. Cl- -dependent net Mg2+ efflux was inhibited by amiloride. Only 10% of the maximal net Mg2+ efflux may depend on extracellular Na+.  相似文献   

13.
14.
Montell C 《Current biology : CB》2003,13(20):R799-R801
TRPM6 and TRPM7 are distinct from all other ion channels in that they are composed of linked channel and protein kinase domains. Recent studies demonstrate that these 'chanzymes' are essential for Mg(2+) homeostasis, which is critical for human health and cell viability.  相似文献   

15.
Using whole-cell patch clamp technique, we investigated the blocking effects of extracellular Ba2+ and Mg2+ on the inwardly rectifying K+ (KIR) currents of bovine pulmonary artery endothelial cells (BPAEC). The BPAEC KIR channel has recently been identified as Kir2.1 of the Kir2.0 subfamily. Block of KIR currents by Mg2+ (3-30 mM) was instantaneous, and increased with hyperpolarization slightly (Kd at -160 and 0 mV was 9.5 and 23.2 mM, respectively). The apparent fractional electrical distance (delta) of the Mg2+ binding site is calculated to be 0.07 from the outer mouth of the channel pore. Ba2+ (0.3-10 microM) time-dependently blocked the KIR currents with a much higher potency and stronger voltage-dependence (Kd at -160 and 0 mV was 1.0 and 41.6 microM, respectively). The Ba2+ binding site had a delta value of 0.34. Our data suggest that Mg2+ binds to a very superficial site of the KIR channel, while Ba2+ binds to a much deeper site, sensing much more of the membrane electric field. Thus, the BPAEC Kir2.1 appears to be pharmacologically different from the Kir2.1 reported before in bovine aortic endothelial cells (BAEC), which has 2 sites for Mg2+ block (a deep site in addition to a shallow one), and a superficial and low-sensitivity site for Ba2+ block.  相似文献   

16.
1. Macroscopic and single-channel currents through several types of cloned rat brain Na+ channels, expressed in Xenopus oocytes, were measured using the patch-clamp technique. 2. For all cloned channel types and for endogenous Na+ channels in chromaffin cells, intracellular Mg2+ blocks outward currents in a voltage-dependent manner similar to that in rat brain type II Na+ channel (Pusch et al. 1989). 3. A sodium-channel mutant (cZ-2) with long single-channel open times was used to examine the voltage-dependent reduction of single-channel outward current amplitudes by intracellular Mg2+. This reduction could be described by a simple blocking mechanism with half-maximal blockage at 0 mV in 1.8 mM intracellular Mg2+ and a voltage-dependence of e-fold per 39 mV (in 125 mM [Na] i ); this corresponds to a binding-site at an electrical distance of 0.32 from the inside of the membrane. 4. At low Mg2+ concentrations and high voltages, the open-channel current variance is significantly elevated with respect to zero [Mg] i . This indicates that Mg2+ acts as a fast blocker rather than gradually decreasing current, e.g. by screening of surface charges. Analysis of the open-channel variance yielded estimates of the block and unblock rate constants, which are of the order of 2 · 108 M–1 s–1 and 3.6 · 105 s–1 at 0 mV for the mutant cZ-2. 5. A quantitative analysis of tail-currents of wild-type 11 channels showed that the apparent affinity for intracellular Mg2+ strongly depends on [Na] i . This effect could be explained in terms of a multi-ion pore model. 6. Simulated action potentials, calculated on the basis of the Hodgkin-Huxley theory, are significantly reduced in their amplitude and delayed in their onset by postulating Mg2+ block at physiological levels of [Mg] i .abbreviations [Na]i intracellular Na+ concentration - [K] i intracellular K+ concentration - [Mg] i intracellular Mg2+ concentration - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis-[\-amino-ethyl ether] N,N-tetra acetic acid - TEA tetraethylammonium  相似文献   

17.
18.
Fast disassembly of microtubules induced by Mg2+ or Ca2+   总被引:2,自引:0,他引:2  
The extent and rate of disassembly of microtubules induced by the addition of high concentrations of magnesium and calcium have been measured. At 25 degrees C, the rate constant for microtubule disassembly increases more than ten-fold on increasing [Mg2+] from 4.0 to 20 mM. The process is even more sensitive to [Ca2+], showing similar enhancement on increasing [Ca2+] from 0.5 to 8 mM. Electron microscopy indicates that the disassembly is an end-dependent process. Complete microtubule disassembly occurs at concentrations in excess of 10 and 2 mM for Mg2+ and Ca2+, respectively; this suggests the importance of binding to weak sites for both ions. The sensitivity to ionic composition explains the wide variations in the published values for k-, under varying conditions. The results indicate the potential range of microtubule disassembly rates which may be encountered under different conditions in vitro and in vivo. The highest values of k- (ca. 3000 s-1) would imply microtubule shortening rates in excess of 100 um per minute.  相似文献   

19.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

20.
Regulation of intracellular magnesium by Mg2+ efflux   总被引:1,自引:0,他引:1  
Chicken erythrocytes were loaded with Mg2+ by incubation with the cation ionophore A 23187 in the presence of Mg2+. After removing A 23187 by intensive washing with serum albumin and reincubating the Mg2+-loaded cells, Mg2+ was transported out of the cells until the original Mg2+ content was achieved. The net Mg2+ efflux followed Michaelis-Menten-kinetics and was independent of extracellular and intracellular Ca2+ and calmodulin. The net Mg2+ efflux was not affected by adrenalin, isoproterenol, p-chloromercuribenzenesulfonate, ouabain and tetrodotoxin, but was inhibited by dicyclohexylcarbodiimide, KCN, iodoacetate, high extracellular concentrations of Mg2+, Mn2+ and when extracellular Na+ was substituted by choline or K+. The efflux of 1 Mg2+ was coupled with the uptake of 2 Na+. It is concluded that there exists an additional gating process at the inner cell surface becoming active only at increased concentrations of intracellular free Mg2+ regulating the exit of Mg2+ by the efflux system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号