首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of the host cell and is known to interact with several components of the cellular DNA-damage-signaling machinery. We have previously reported that the DNA damage response kinase, ATR, is specifically inactivated in HSV-1-infected cells. On the other hand, we have also shown that ATR and its scaffolding protein, ATRIP, are recruited to viral replication compartments, where they play beneficial roles during HSV-1 replication. In order to better understand this apparent discrepancy, we tested the hypothesis that some of the components of the ATR pathway may exert an antiviral effect on infection. In fact, we learned that all 10 of the canonical ATR pathway proteins are stable in HSV-infected cells and are recruited to viral replication compartments; furthermore, short hairpin RNA (shRNA) knockdown shows that several, including ATRIP, RPA70, TopBP1, Claspin, and CINP, are required for efficient HSV-1 replication. We also determined that activation of the ATR kinase prior to infection did not affect virus yield but did result in reduced levels of recombination between coinfecting viruses. Together, these data suggest that ATR pathway proteins are not antiviral per se but that activation of ATR signaling may have negative consequences during viral replication, such as inhibiting recombination.  相似文献   

2.
3.
4.
The replication of herpes simplex virus (HSV) is unimpeded in KB cells which have been blocked in their capacity to synthesize deoxyribonucleic acid (DNA) by high levels of thymidine (TdR). Studies showed that the presence of excess TdR did not prevent host or viral DNA replication in HSV-infected cells. In fact, more cellular DNA was synthesized in infected TdR-blocked cells than in uninfected TdR-blocked cells. This implies that the event which relieved the TdR block was not specific for viral DNA synthesis but allowed some cellular DNA synthesis to occur. These results suggested that HSV has a means to insure a pool of deoxycytidylate derivatives for DNA replication in the presence of excess TdR. We postulated that a viral-induced ribonucleotide reductase was present in the cell after infection which was not inhibited by thymidine triphosphate (TTP). Accordingly, comparable studies of the ribonucleotide reductase found in infected and uninfected KB cells were made. We established conditions that would permit the study of viral-induced enzymes in logarithmically growing KB cells. A twofold stimulation in reductase activity was observed by 3 hr after HSV-infection. Reductase activity in extracts taken from infected cells was less sensitive to inhibition by exogenous (TTP) than the enzyme activity present in uninfected cells. In fact, the enzyme extracted from infected cells functioned at 60% capacity even in the presence of 2 mm TTP. These results support the idea that a viral-induced ribonucleotide reductase is present after HSV infection of KB cells and that this enzyme is relatively insensitive to inhibition by exogenous TTP.  相似文献   

5.
In addition to adenoviruses, which are capable of completely helping adenovirus-associated virus (AAV) multiplication, only herpesviruses are known to provide any AAV helper activity, but this activity has been thought to be partial (i.e., AAV DNA, RNA, and protein syntheses are induced, but infectious particles are not assembled). In this study, however, we show that herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are in fact complete AAV helpers and that AAV type 2 (AAV2) infectivity yields can approach those obtained when coinfections are carried out with a helper adenovirus. AAV helper activity was demonstrated in KB cells with two HSV-1 strains (11124 and 17MP) and an HSV-2 strain (HG52). Each herpesvirus supported AAV2 multiplication with comparable efficiency. AAV2 multiplication was similarly efficient in HSV-1 coinfections of HeLa cells, whereas lower yields were obtained in HEp-2 and primary human embryonic kidney cells. HSV-1 also supported AAV1 multiplication in HeLa cells but, at corresponding multiplicities of infection, AAV1 grew less efficiently than AAV2. Comparisons of the time courses of AAV2 DNA, RNA, and protein syntheses after coinfection with either adenovirus type 5 or HSV-1 revealed that, in each case, the onset of synthesis and attainment of maximal synthesis rate occurred earlier in coinfections with HSV-1. These findings demonstrate the linkage of AAV macromolecular synthesis to an event(s) in the helper virus cycle. Aside from this temporal association, helper-related differences in AAV macromolecular synthesis were not apparent.  相似文献   

6.
Inhibition of Herpes Simplex Virus Type 2 Replication by Thymidine   总被引:4,自引:14,他引:4       下载免费PDF全文
Replication of herpes simplex virus type 2 (HSV-2) was impeded in KB cells which were blocked in their capacity to synthesize DNA by 2 mM thymidine (TdR). The degree of inhibition was dependent upon the concentration of TdR. In marked contrast, HSV-1 is able to replicate under these conditions. The failure of HSV-2 to replicate is probably due to the inhibition of viral DNA synthesis; there was a marked reduction in the rate of DNA synthesis as well as the total amount of HSV-2 DNA made in the presence of 2 mM TdR. We postulated that the effect of TdR on viral replication occurs at the level of ribonucleotide reductase in a manner similar to KB cells. However, unlike KB cells, an altered ribonucleotide reductase activity, highly resistant to thymidine triphosphate inhibition, was found in extracts of HSV-2-infected KB cells. This activity was present in HSV-2-infected cells incubated in the presence or absence of TdR. Ribonucleotide reductase activity in extracts of HSV-1-infected KB cells showed a similar resistance to thymidine triphosphate inhibition. These results suggest that the effect of TdR on HSV-2 replication occurs at a stage of DNA synthesis other than reduction of cytidine nucleotides to deoxycytidine nucleotides.  相似文献   

7.
8.
9.
A comparison, under standardized conditions, of herpes simplex virus (HSV) and human cytomegalovirus (CMV) revealed differences in viral morphology, in the timing of their infectious cycles, and in several morphological events during those cycles. Structural distinctions between the two viruses included the coating of unenveloped cytoplasmic CMV capsids, but not those of HSV, and a variation in the structure of their cores. Since the two cycles were carried out in the same host cell strain under conditions of one-step growth (input multiplicity = 10 PFU/cell), it was possible to construct time scales locating the major events of each cycle. Comparison of the two showed that HSV replicated and released progeny within 8 h postinfection, whereas CMV required 4 days. These results correlated well with those of concurrent plaque assays. Within the longer CMV cycle, most of the major events appeared retarded to a similar degree, and no obvious limiting step in particle production could be identified. Distinctions between the two cycles included the following: condensation of the chromatin in HSV- but not CMV-infected cells; the greater tendency of HSV to produce membrane alterations; and the appearance of cytoplasmic dense bodies in CMV- but not HSV-infected cells. Identification of these differences even under identical conditions of culture and infection strongly implies that they result from intrinsic differences in the nature of the viruses, and are not caused by variations in experimental conditions.  相似文献   

10.
The herpes simplex virus replicon consists of cis-acting sequences, oriS and oriL, and the origin binding protein (OBP) encoded by the UL9 gene. Here we identify essential structural features in the initiator protein OBP and the replicator sequence oriS, and we relate the appearance of these motifs to the evolutionary history of the alphaherpesvirus replicon. Our results reveal two conserved sequence elements in herpes simplex virus type 1, OBP; the RVKNL motif, common to and specific for all alphaherpesviruses, is required for DNA binding, and the WP XXXGAXXFXX L motif, found in a subset of alphaherpesviruses, is required for specific binding to the single strand DNA-binding protein ICP8. A 121-amino acid minimal DNA binding domain containing conserved residues is not soluble and does not bind DNA. Additional sequences present 220 amino acids upstream from the RVKNL motif are needed for solubility and function. We also examine the binding sites for OBP in origins of DNA replication and how they are arranged. NMR and DNA melting experiments demonstrate that origin sequences derived from many, but not all, alphaherpesviruses can adopt stable boxI/boxIII hairpin conformations. Our results reveal a stepwise evolutionary history of the herpes simplex virus replicon and suggest that replicon divergence contributed to the formation of major branches of the herpesvirus family.Herpesviruses have been found in animal species ranging from molluscs to man. According to the International Committee on Taxonomy of Viruses, the order of Herpesvirales consists of three families as follows: Alloherpesviridae, Herpesviridae, and Malacoherpesviridae (1). The subfamilies Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae are found within the family of Herpesviridae. The events leading to establishment of a new virus species are poorly understood, but in the case of herpesviruses it is commonly assumed that viruses co-evolve with their hosts (2). Herpesviruses have thus become well adapted to their hosts and may reside in a latent state in the host for a lifetime with little or no overt signs of infection. Upon reactivation, the infectious virus will be released. The viruses remain faithful to their hosts, and infections across species borders are rare but may under specific circumstances give rise to fatal disease.Replication of herpes simplex virus type 1 (HSV-1),2 requires a cis-acting DNA sequence, the replicator, termed oriS or oriL, an initiator protein, OBP or UL9 protein, and a replisome composed of DNA polymerase, helicase-primase, and a single strand DNA-binding protein referred to as ICP8 or UL29 protein (3). OBP assisted by ICP8 can in an ATP-dependent reaction unwind double-stranded oriS (4, 5). The resulting single-stranded DNA adopts a hairpin conformation, which is stably bound by OBP (6, 7). The herpesvirus replisome once assembled on DNA is capable of synthesizing leading and lagging strands processively in a coordinated fashion (8). DNA replication is likely to start on circular molecules produced by the action of DNA ligase IV/XRCC4 and proceed in a θ-type manner (9, 10). Later, a rolling circle mode of replication dominates giving rise to characteristic head-to-tail concatemers. The initiator protein OBP appears to be strictly required only during the first few hours of the infectious cycle (11, 12).The HSV-1 origin binding protein was first isolated using an assay monitoring specific binding to HSV-1 oriS (13). A minimal DNA-binding site was identified using footprinting techniques as well as binding studies with double-stranded oligonucleotides (14). For alphaherpesviruses the high affinity binding site is always TTCGCAC, with a minor exception for CHV1 also referred to as monkey B virus (3 The C-terminal 317 amino acids of alphaherpesvirus OBP can be isolated as a soluble protein, which remains capable of high affinity binding to the sequence TTCGCAC (15). The C-terminal domain of HSV-1 OBP, here referred to as ΔOBP, binds as a monomer to the major groove in the DNA and makes contacts with base pairs as well as the deoxyribose-phosphate backbone (16, 17). ΔOBP binds DNA specifically with an estimated Kd of 0.3 nm, a value that is highly influenced by the composition of the assay buffer (16). At high protein concentrations ΔOBP form aggregates, which, still in a sequence-specific manner, binds DNA (16). A number of studies have attempted to define amino acids involved in DNA binding (1821). In addition, sequence comparisons between alphaherpesviruses and roseoloviruses have helped to identify amino acids in OBP potentially involved in DNA binding as well as corresponding recognition sequences in origins of DNA replication (2225). However, a comprehensive and quantitative study of evolutionarily conserved amino acids required for DNA binding is still lacking.

TABLE 1

Functionally significant sequence motifs for herpes simplex virus replicon evolutionOrigins of DNA replication have been identified from sequence analysis. For roseoloviruses the sequences for two slightly different binding sites for OBP have been listed (31). The number and orientation of OBP-binding sites in relation to an AT-rich spacer sequence are schematically presented by symbols > and <. Note that since a virus often has more than one origin of replication they may exist as variants. This is indicated by symbols within parentheses. The conserved amino acids within the ICP8-binding motif are shown in boldface type. Sources and nomenclature for DNA sequences have been presented in Footnote 3.Open in a separate windowThe single strand DNA-binding protein, ICP8 encoded by the UL29 gene, is involved in initiation of DNA replication, and it also participates in the elongation phase at the replication fork (4, 5, 26). ICP8 forms a specific complex with OBP (26, 27). Studies with deletion mutants have demonstrated that important sequences are found close to the C terminus of OBP, but amino acids directly participating in the high affinity interaction have not been identified. The interaction is biologically significant, because deletion of the extreme C terminus enhances the helicase activity of OBP but reduces origin-dependent DNA synthesis (26).The HSV-1 oriS contains three copies of the binding site for OBP; two binding sites, box I and box II, are high affinity sites, and the third binding site, box III, has a very low affinity for OBP (14) (Fig. 1). All sites are required for efficient replication, and in a competitive situation there is a strong selection for the most efficient replicator sequence (28). Box III and box I are arranged in a palindrome, which becomes rearranged upon activation to form an alternative conformation, most likely a hairpin (4, 6, 7). Point mutations that prevent formation of a hairpin reduce replication, and compensatory mutations restore complementary base pairing as well as the ability to replicate (7).Open in a separate windowFIGURE 1.Schematic presentation of the herpes simplex virus replicon. Upper part, HSV-1 oriS. The linear genome contains three homologous replication origins, two copies of oriS and one copy oriL, and encodes seven replication proteins. Middle part, HSV-1 OBP. OBP or UL9 protein is a superfamily II DNA helicase as well as a sequence-specific DNA-binding protein. Here the helicase domain is represented by two connected ellipsoids, and the C-terminal DNA binding is drawn as a circle. The OBP-binding sites in oriS are shown. The OBP dimer binds two double-stranded DNA box I oligonucleotides but only one hairpin with a single-stranded tail (48). The figure is intended to demonstrate conformational changes affecting the DNA binding domain, referred to as ΔOBP, during activation of oriS. Lower part, DNA binding domain ΔOBP. A schematic presentation of the following three motifs discussed in this publication: the F553 XX KYL motif required for proper folding of the DNA binding domain, the R756VKNL motif necessary for DNA binding, and the W839PXXXGAXXFXXL motif involved in binding to ICP8.To learn more about the mechanism of virus evolution, we have examined the evolutionary history of some functionally significant features of the HSV-1 replicon and related them to a sequence-based evolutionary tree. The results indicate that replicon divergence, characterized by the stepwise appearance of the DNA-binding RVKNL motif, the WPXXXGAXXFXXL ICP8-binding motif, and the boxIII–boxI palindrome, may have played important roles in establishing major branches of the alphaherpesvirus tree.  相似文献   

11.
12.
13.
李怡璇  刘民  李欣  汤华 《病毒学报》2008,24(3):208-212
格尔德霉素(Geldanamycin,GA)作为一种苯醌安莎霉素类抗生素,能与热休克蛋白90特异性结合,具有广谱的抗病毒作用.为了从转录水平上研究GA抗病毒的分子机制,本研究以单纯疱疹病毒Ⅰ型(Herpes simplex vi-rus type 1,HSV-1)为对象,在确定药物有效抗病毒作用的基础上,采用基因芯片技术分析了在HeLa细胞中病毒感染和药物处理对细胞表达谱的影响,并筛选出GA抗病毒作用的可能相关基因.同时用半定量RT-PCR方法对GA诱导上调、HSV-1诱导下调的基因(ACTG1、RAN、SODl)以及GA诱导下调、HSV-1诱导上调的基因(HYALl)进行了验证.研究GA抗病毒作用对细胞表达谱的影响,有利于深入理解药物的抗病毒机制.  相似文献   

14.
15.
Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.  相似文献   

16.
17.
18.
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens.  相似文献   

19.
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a “hemifusion” intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins—glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)—to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins—gD, gB, and gH/gL—were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.Membrane fusion is an essential step during the entry process of enveloped viruses, such as herpes simplex virus (HSV), into target cells. The general pathway by which enveloped viruses fuse with target membranes through the action of fusion proteins is fairly well understood. Viral fusion proteins use the free energy liberated during their own protein conformational changes to draw the two membranes—viral and target—together. Fusion is thought to proceed through a “hemifusion” intermediate, in which the proximal leaflets of the two bilayers have merged but a viral pore has not yet formed and viral contents have not yet mixed with the cell cytoplasm (10, 38). Fusion proteins then drive the completion of fusion, which includes fusion pore formation, pore enlargement, and complete content mixing.HSV, an enveloped neurotropic virus, requires four glycoproteins—glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL)—to execute fusion (9, 57, 60). gB, gD, and gH are membrane bound; gL is a soluble protein which complexes with gH to form a heterodimer (gH/gL). HSV-1 gH is not trafficked to the cell or virion surface in the absence of gL (32, 52). The requirement of four entry glycoproteins sets HSV apart from other enveloped viruses, most of which induce fusion through the activity of a single fusion protein. Although the specific mode of HSV entry is cell type dependent—fusion with neurons and Vero cells occurs at the plasma membrane at neutral pH; fusion with HeLa and CHO cells involves pH-dependent endocytosis, and fusion with C10 cells involves pH-independent endocytosis (42, 45)—all routes of entry require gD, gB, and gH/gL. Furthermore, although some discrepancies between virus-cell and cell-cell fusion have been observed (8, 44, 55, 58), both generally require the actions of gD, gB, and gH/gL.Much work has gone toward the understanding of how the required HSV entry glycoproteins work together to accomplish fusion, and many questions remain. After viral attachment, mediated by glycoprotein C and/or gB (54), the first step in HSV fusion is thought to be gD binding a host cell receptor (either herpesvirus entry mediator [HVEM], nectin-1, nectin-2, or heparan sulfate modified by specific 3-O-sulfotransferases) (56). The gD-receptor interaction induces a conformational change in gD (39) that is thought to trigger gD-gB and/or gD-gH/gL interactions that are required for the progression of fusion (1-4, 13, 18, 23, 49).gB and gH/gL are considered the core fusion machinery of most herpesviruses. The HSV-1 gB structure revealed surprising structural homology to the postfusion structures of two known viral fusion proteins (31, 35, 51). This structural homology indicates that despite not being sufficient for HSV fusion, gB is likely a fusion protein. Although the gB cytoplasmic tail (CT) is not included in the solved structure, it acts as a regulator of fusion, as CT truncations can cause either hyperfusion or fusion-null phenotypes (5, 17). The gB CT has been proposed to bind stably to lipid membranes and negatively regulate membrane fusion (12). Another proposed regulator of gB function is gH/gL. Despite conflicting accounts of whether gD and a gD receptor are required for the interaction of gH/gL and gB (1, 3, 4), a recent study indicates that gH/gL and gB interact prior to fusion and that gB may interact with target membranes prior to an interaction with gH/gL (2). The gB-gH/gL interaction seems to be required for the progression of fusion.Compared to the other required HSV entry glycoproteins, the role of gH/gL during fusion remains enigmatic. Mutational studies have revealed several regions of the gH ectodomain, transmembrane domain (TM), and CT that are required for its function (19, 25, 26, 30, 33). gH/gL of another herpesvirus, Epstein-Barr virus (EBV), have been shown to bind integrins during epithelial cell fusion, and soluble forms of HSV gH/gL have been shown to bind cells and inhibit viral entry in vitro (24, 46). However, the role of gH/gL binding to target cells in regard to the fusion process remains to be determined.There are some lines of evidence that suggest that gH/gL is a fusion protein. The gH/gL complexes of VZV and CMV have been reported to independently execute some level of cell-cell fusion (14, 37). HSV-1 gH/gL has been reported to independently mediate membrane fusion during nuclear egress (15). In silico analyses and studies of synthetic HSV gH peptides have proposed that gH has fusogenic properties (20, 21, 25-28). Finally, of most importance to the work we report here, gH/gL has been shown to be sufficient for induction of hemifusion in the presence of gD and a gD receptor, further promoting the premise that gH/gL is a fusion protein (59). However, the recently solved crystal structure of HSV-2 gH/gL revealed a tight complex of gH/gL in a “boot-like” structure, which bears no structural homology to any known fusion proteins (11). The HSV-2 gH/gL structure and research demonstrating that gH/gL and gB interactions are critical to fusion (2) have together prompted a new model of HSV fusion in which gH/gL is required to either negatively or positively regulate the activity of gB through direct binding.We wanted to investigate the ability of a previously reported gH CT mutant, 824L, to execute hemifusion. 824L gH contains a five-residue insertion at gH residue 824, just C-terminal of the TM domain. 824L is expressed on cell surfaces and incorporated into virions at levels indistinguishable from those of wild-type gH by either cell-based ELISA or immunoblotting, yet it is nonfunctional (33). We relied on a fusion assay capable of detecting hemifusion, developed by Subramanian et al. (59), which we modified to include an additional control for hemifusion or nonenlarging pore formation, glycosylphosphatidylinositol (GPI)-linked hemagglutinin (GPI-HA). GPI-HA is a variant of the influenza virus fusion protein, HA, that is known to stall the fusion process before enlarging fusion pores are formed.We were surprised to find that in our hands, gD, a gD receptor, and gH/gL were insufficient for the induction of hemifusion or lipid mixing in both cell-based and virus-based fusion assays. We found that gD, gB, and gH/gL are all required to observe lipid mixing. Further, we found that gB, gD, gL, and 824L gH are insufficient for lipid mixing. Our findings support the emerging view, based on gH/gL structure, that the gH/gL complex does not function as a fusion protein and does not insert into target membranes to initiate the process of fusion through a hemifusion intermediate. Our findings also further demonstrate that mutations in the CT of gH can have a dramatic effect on the ability of gH/gL to function in fusion.  相似文献   

20.
关泽红  旭日干 《病毒学报》2008,24(2):96-100
细胞周期蛋白依赖性蛋白激酶(CDK)与单纯疱疹病毒(HSV)等多种重要人类疾病病毒的复制密切相关.但具体哪种CDK是病毒复制所必需的还不清楚.本文用不同剂量的HSV-1-KOS株(以下简称HSV)感染CDK2功能缺陷型宿主细胞,结果发现HSV在CDK2功能缺陷型宿主细胞中的复制具有感染剂量依赖性;一步生长曲线分析结果表明其在CDK2功能缺陷型宿主细胞中的复制较在正常细胞延迟3h;感染6h时CDK2活性被诱导,9h时活性最大;CDK2活性增加后HSV-1即进入快速的裂解性复制.提示CDK2可能在HSV复制的启动中起着某种重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号