首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Splenic lymphocyte proteins from New Zealand Black (NZB) mice, which spontaneously develop autoimmune disease, and several control strains were analyzed by two-dimensional polyacrylamide gel electrophoresis. A number of strain- and age-related differences were observed, among which was the persistently elevated synthesis of two peptides, 12.5 KD and 10.5 KD, by spleen cells from older NZB mice. Although synthesis of these peptides was moderately high in young NZB and control mice, it diminished with age in control mice. These proteins were found in the cytoplasm and were not expressed on the plasma membrane nor secreted into the medium. Production of these proteins was restricted to B and null cells; T cells did not synthesize these peptides. These proteins appear to be indicators of disease activity, because their increased synthesis was associated with lymphocyte subset alterations associated with the onset of overt autoimmune disease in NZB mice.  相似文献   

2.
In an effort to define the cellular basis of abnormalities in polyclonal B cell activation previously noted in NZB mice, the surface immunoglobulin (sIg) isotypes of spleen cells from NZB mice were examined. After lactoperoxidase-catalyzed radioiodination, the cell surface immunoglobulins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Spleen cells from 8- to 10-week-old NZB mice were found to have an increased ratio of cell surface IgM/IgD compared to cells from 11 control strains. The altered ratio of sIg isotypes was not a consequence of increased proteolytic activity present in NZB cell suspensions or of the presence of cytophilic antibody or autoantibody. Ontogenetic studies of the sIgM/sIgD (mu/delta) ration on splenocytes from NZB and BALB/c mice revealed that the former cells had higher mu/delta ratios as early as 2 weeks after birth. By 4 weeks of age the mu/delta ratios were equivalent. Between 4 weeks and 1 year of age, the mu/delta ratios on NZB splenocytes remained constant whereas those on BALB/c splenocytes decreased and reached adult levels at 6 weeks.  相似文献   

3.
Demonstration of active suppressor cells in spleens of young NZB mice   总被引:1,自引:0,他引:1  
NZB mice, a strain prone to the development of autoimmune disease, have during the first 2 weeks of life suppressor cells in their spleens which can in coculture with adult spleen cells suppress the antibody response to sheep red blood cells (SRBC) generated in culture by the adult cells. The suppressive activity of spleen cells from NZB mice in the first week after birth is similar to that of spleen cells from 4-day-old C57BL/6 mice, a strain which does not spontaneously develop autoimmune disease. As in “normal” strains of mice, suppressor cell activity in NZB mice is diminished at 2 weeks and undetectable at 3 weeks of age. The data indicate that there is no defect inherent in the suppressor cells detected in the spleens of newborn and young NZB mice and suggest that the development of autoimmune responses does not result from a lack of suppressor cells in the young animals.  相似文献   

4.
The spontaneous spleen cell proliferation and the proliferation induced by in vivo or in vitro stimulation with such polyclonal B cell activators (PBA) as LPS, poly rI.rC, and anti-mu were studied in normal and autoimmune mice. The various murine models of autoimmunity differ in the level of naturally occurring splenic cellular hyperactivity as well as in the ability of their spleen cells to be further stimulated in vitro by polyclonal stimulators. Both the NZB strain and the MRL/Ipr strain had markedly increased numbers and percentages of spontaneously proliferating spleen cells, whereas the BXSB strain did not. Nonautoimmune strains were found to have very small numbers of activated cells in the spleen. However, such normal strains could be induced in vivo to mimic the natural splenic hyperactivity observed in older NZB and MRL/Ipr autoimmune strains by the injection of polyclonal B lymphocyte stimulators. In contrast, old hyperactive NZB mice were not further induced to undergo proliferation by in vivo administration of such stimulators. Density-separated, T depleted, spleen cells of normal and autoimmune mice were stimulated in vitro with PBA in 48-hr cultures. Cells from old MRL/Ipr and NZB mice were abnormal in both the anti-mu response and the LPS response; BXSB mice had normal anti-mu responses. These studies suggest that there is no prerequisite for spontaneous splenic hyperactivity in the development of autoimmunity. In addition, different PBA stimulate separate subsets of B cells that differ in their state of activation in the various autoimmune strains. Finally, different B cell subsets appear to be abnormal in different types of autoimmune mice.  相似文献   

5.
Mouse bone marrow contains theta-negative lymphocytes that can suppress an in vitro plaque response by spleen cells primed in vivo with burro red blood cells (BRBC). These bone marrow cells are radiosensitive and can be induced with thymosin fraction 5 or alpha 1 thymic peptides to express the theta antigen. Enrichment for these suppressor pre-T lymphocytes can be achieved by a one-step density centrifugation, macrophage depletion, or a combination of both procedures. NZB mice, which spontaneously develop an autoimmune disorder, have a suppressor abnormality revealed by this assay system. Upon analysis, they have normal BM pre-T suppressor cells but their spleen cells are refractory to the BM suppressor signal. NZB BM suppressor cells inhibit the response by DBA/2 spleen cells, but DBA/2 BM suppressor cells do not inhibit NZB spleen. This resistance to suppression is a property of the B cell fraction recovered from NZB spleen.  相似文献   

6.
Treatment of mouse erythrocytes with the proteolytic enzymes, bromelain, reveals antigenic determinants not normally exposed on the erythrocyte surface. It was found that not only NZB mice, a known autoimmune strain, but also several normal strains of mice contain cells in small numbers in their spleens and in larger numbers in their peritoneal cavities which will form plaques against bromelain-treated MRBC. During in vitro culture the number of anti-BR-MRBC PFC increases slightly in the spleen cell populations whereas the number of these PFC in peritoneal cells increases dramatically to as many as 100,000 PFC/10(6) cells. The plaques detected in this assay contain a central lymphoid cell and their development, which requires the presence of complement and protein synthesis, is inhibited by anti-mouse immunoglobulin.  相似文献   

7.
B cell unresponsiveness was examined in vitro by using spleen cells from autoimmune NZB, BXSB/Mp male, MRL/Mp-Ipr/Ipr (MRL/l), and control mice, and the tolerogen trinitrophenyl human gamma-globulin (TNP-HGG). The B cell subset responsive to TNP-Brucella abortus in each autoimmune and control strain that was tested was highly susceptible to tolerance induction with the use of high epitope density conjugates (TNP30HGG and TNP32HGG). When a tolerogen with a lower epitope density was used (TNP7HGG), several control strains were all rendered tolerant in a thymic-independent and hapten-specific manner. NZB B cells were resistant to all concentrations of TNP7HGG tested, whereas B cells from BXSB/Mp male and MRL/1 mice were resistant to low concentrations of this tolerogen. NZB mice were resistant in addition to tolerance induction with TNP9HGG, TNP10HGG, and TNP12.7HGG. Experiments were performed to determine whether splenic macrophages played a role in resistance to tolerance in NZB mice. The mixing of NZB and control DBA/2J T cell-depleted splenocytes revealed no modulatory effects by the accessory cells in culture. Moreover, B cells rigorously depleted of macrophages by double Sephadex G-10 column passage exhibited characteristic patterns of resistance or susceptibility in NZB and control strains, respectively. These findings support the conclusion that resistance to tolerance in NZB mice is determined at the B cell level and are consistent with the hypothesis that diverse immunoregulatory disturbances contribute in varying degrees to the development of systemic lupus erythematosus in different inbred strains of mice.  相似文献   

8.
The autologous mixed lymphocyte reaction (AMLR) can be detected in older NZB mice after treatment of the responding cell population with monoclonal anti-I-Ad and complement and supplementation of the culture medium with T-cell growth factor (TCGF) from young animals. The addition of TCGF to cultures containing responding cells alone that had not been pretreated with anti-I-A plus complement resulted in high levels of background proliferation. This is indicative of a high number of preexisting I-A-positive, activated, TCGF-responsive T cells in these mice. These activated cells could also be removed by treatment with anti-I-A antibody and panning on anti-mouse Ig plates, or by BUdR and light killing of those cells proliferating in the presence of TCGF or purified IL-2. Prior treatment of the responding cells with anti-Lyt 2 and complement did not effect the AMLR. An NZB AMLR responding cell line was established using these methods. This line retained haplotype specificity in a proliferation assay. Limiting dilution analysis of the precursor frequency of AMLR responding cells in the nonautoimmune C58 and BALB/C strains in culture medium with TCGF gave a frequency of between 1 in 35,000 and 1 in 88,000. In young, AMLR-positive, NZB mice, supplementation with TCGF yielded precursor frequencies within the normal range. In older NZB mice, the addition of TCGF resulted in increased background proliferation of preactivated, IA+ T cells. After removal of these cells with anti-I-A plus complement, AMLR responding cells were found at normal frequency levels when stimulated in the presence of TCGF. In the oldest animals tested (greater than 18–20 weeks), normal precursor frequencies could not be demonstrated even after this treatment, representing a true decline in the AMLR responding cell number. AMLR deficiency in NZB mice appears therefore to be the result of the combined effects of decreased lymphokine production, excessive T-cell activation, and finally decreased numbers of AMLR responding cells.  相似文献   

9.
Cytotoxic lymphocyte (CTL) responses are not usually generated during primary mixed leukocyte culture (MLC) with H-2 identical cells. Thus NZB mice are unusual in that their spleen cells do mount CTL responses during primary MLC with H-2d identical stimulator cells; the predominant target antigen for these NZB responses is Qa-1b. Considering the numerous immunoregulatory defects in NZB mice, we postulated that these NZB anti-Qa-1 primary CTL responses were due to an abnormality in T suppressor cell activity. Cellular interactions capable of suppressing NZB anti-Qa-1 primary CTL responses were investigated by using one-way and two-way MLC with spleen cells from NZB mice and other H-2d strains. Although H-2d identical one-way MLC with the use of NZB responders resulted in substantial CTL responses, only minimal CTL responses were detected from two-way MLC with the use of NZB spleen cells plus nonirradiated spleen cells from other H-2d mice. Thus the presence of non-NZB spleen cells in the two-way H-2d identical MLC prevented the generation of NZB CTL. Noncytotoxic mechanisms were implicated in the suppression of the NZB CTL responses during two-way MLC, because only minimal CTL activity was generated when NZB spleen cells were cultured with semiallogeneic, H-2d identical (e.g., NZB X BALB) F1 spleen cells. The observed suppression could be abrogated with as little as 100 rad gamma-irradiation to the non-NZB spleen cells. The phenotype of these highly radiosensitive spleen cells was Thy-1+, Lyt-1+, Lyt-2-, L3T4+. The functional presence of these cells in the spleens of semiallogeneic, H-2d identical F1 mice indicated that their deficiency in NZB mice was a recessive trait. These data suggest that NZB mice lack an L3T4+ cell present in the spleens of normal mice that is capable of suppressing primary anti-Qa-1 CTL responses. This model system should facilitate additional investigations of the cellular interactions and immunoregulatory mechanisms responsible for controlling primary CTL responses against non-H-2K/D class I alloantigens. The model may also provide insight into the immunoregulatory defects of autoimmune NZB mice.  相似文献   

10.
By using the splenic fragment assay in a KLH-primed host, we have evaluated the clonal anergy model of tolerance in DBA/2 and spontaneously autoimmune NZB mice. Unlike immature B cells from DBA/2 mice (which are tolerized by encounter with TNP-OVA), SIg- B cells from NZB mice respond to TNP-KLH with equal precursor frequency in TNP-OVA-tolerized or control fragments. In additional experiments, SIg- bone marrow or mature spleen cells of DBA/2 or NZB origin were adoptively transferred into irradiated (DBA/2 X NZB) F1 X xid hosts, and host-derived splenic fragments were stimulated in vitro with LPS and growth factors. These experiments revealed a substantial anti-ssDNA precursor frequency in NZB marrow and spleen (2.5 and 5.1, respectively, per 10(7) transferred cells). In DBA/2 SIg- marrow cells, there was an anti-ssDNA precursor frequency of 1.3 to 3.5/10(7) transferred cells; however, anti-ssDNA-producing clones were reduced in fragments derived from recipients of DBA/2 as compared with NZB spleen cells (0.2 to 1.9/10(7) transferred cells). By using a replica plate technique, we evaluated fragments from recipients of DBA/2 SIg- marrow cells or mature spleen cells for anti-TNP reactivity. In fragments derived from recipients of DBA/2 SIg- marrow cells, 92% of anti-TNP-producing fragments also bound ssDNA. In fragments derived from recipients of DBA/2 spleen cells, only 43% of anti-TNP-producing fragments also bound ssDNA. Our findings document that NZB marrow-derived immature B cells abnormally resist tolerance induction, and that clonal anergy/selection operates in directing the B cell repertoire away from autoantibody formation.  相似文献   

11.
The unit gravity sedimentation technique was used to separate spleen cells from sevveral strains of mice. Settling patterns (plot of cell number against settling rate) were similar for BALB/c, DBA/2, C3H/He, and NZB/W mice of different ages. In particular, no subpopulation was found by this technique to be missing from the spleens of old NZB/W mice.A number of functional studies performed with the separated cells proved more informative than the settling patterns themselves. Fractions of cells which sedimented at a rate of between about 6 mm/hr and 10 mm/hr were enriched in responsiveness to PHA, Con A, and allogeneic cells. These fractions obtained from old NZB/W mice lacked such activities. However, the active fractions from young NZB/W spleens, which were enriched in θ-bearing cells, could restore the responsiveness of old NZB/W mice to primary immunization with sheep erythrocytes. These studies indicate that functional separation of spleen cells from NZB/W mice is possible and that activities lacking in whole spleens from old NZB/W mice are also lacking in the separate fractions. The ability to restore helper T cell function in old NZB/W mice with active fractions from young NZB/W mice has implications for further study and treatment of their autoimmune disease.  相似文献   

12.
Distribution of anti-histone-antibody-secreting cells in NZB/NZW mice   总被引:2,自引:0,他引:2  
Using a histone-specific plaque assay, we examined anti-histone-antibody (AHA) production at the organ level in the autoimmune NZB/NZW strain. The spleen had the highest absolute numbers of AHA-secreting cells. High percentages of immunoglobulin-secreting cells producing AHA were characteristic of spleen and bone marrow but not lymph node. AHA-secreting cells were detected in NZB/NZW mice with elevated serum activity but not in mice with normal serum levels. Serum AHA activity correlated with the number of AHA-secreting cells in the spleen but not with the total number of immunoglobulin-secreting cells in the spleen nor with the total serum immunoglobulin level. These findings concerning the organ distribution of AHA-secreting cells contrast with results of other investigators studying autoantibodies of other specificities. Furthermore, our results suggest that AHA production does not solely result from a generalized increase in total immunoglobulin synthesis present in NZB/NZW mice.  相似文献   

13.
Natural thymocytolytic autoantibodies in NZB and other strains of mice   总被引:2,自引:0,他引:2  
Spontaneously occurring autoantibodies to thymus cells were detected in NZB and other strains of mice by means of cytolysis in agar gel. Serum antibodies were detected by a spot test in which circular zones of lysed thymus cells were observed after the diffusion of serum and complement. In addition, cells forming antithymocyte antibodies were detected in the spleens of tested animals by means of a plaque assay in which antibody-forming cells could be enumerated as plaque-forming cells. The thymocytolytic antibodies were of the IgM class, they resisted heating at 56 °C for 30 min and showed optimal binding activity at 4 °C, even though they were active in temperatures up to 37 °C. They could be detected in a small proportion of mice 1–2 months old, but they had a higher incidence in mice older than 8 months.Studies performed with thymocytes originating from various murine strains indicated that the antibodies under study combined with an antigen which was present on thymocytes of all murine strains tested, including syngeneic and autologous thymocytes. Absorptions demonstrated the presence of the antigen on murine thymus, spleen, and brain cells. Absorptions with L5178Y lymphoma cells suggested that there might be two different antigens involved in the reactions with these thymocytolytic antibodies. Properties of the thymocytolytic antibodies suggested that they are identical with natural thymocytotoxic autoantibodies described by Shirai et al.The possible pathogenic role of these antibodies in autoimmune disorders of NZB mice, particularly in the Coombs'-positive hemolytic anemia, was investigated and discussed.  相似文献   

14.
Co-culture of mouse spleen nonadherent (T-enriched cells with mitomycin C-treated unfractionated syngeneic spleen cells resulted in increased DNA synthesis in the responding T cells. The kinetics of this syngeneic mixed lymphocyte reaction (SMLR) showed that peak DNA synthesis occurred on day 5 of culture compared to day 4 for conventional mixed lymphocyte reaction (MLR). Anti-T cell antiserum plus complement treatment of the responding cell population abolished the reaction, and similar treatment of the stimulator population enhanced SMLR. These studies indicate that SMLR represents the response of T cells to non-T cells. Studies on the generation of cytotoxic T lymphocytes (CTL) in parallel cultures of T cells activated by syngeneic or allogeneic spleen cells showed no cytotoxicity of SMLR-activated cells for either PHA- or LPS-induced blasts but did show a good CTL response of allo-activated cells to both targets. Studies on the strain distribution of SMLR revealed that NZB mice manifested poor or no stimulation in SMLR whereas all other strains tested exhibited strong SMLR. This defect in NZB mice may be pathogenetically related to the autoimmune disease that develops in these mice.  相似文献   

15.
The formation of B lymphocytes in young New Zealand Black (NZB) mice proceeds at an accelerated rate resulting in a deficiency of B lineage precursors in adult (greater than 15 wk old) animals. To study the characteristics of B lineage cells in young (4 wk) and old (6 mo) NZB mice, bone marrow from these animals was used to initiate long term lymphoid bone marrow cultures (LBMC) that permit the long term maintenance of B cells and their precursors. Age-matched cultures from BALB/c mice and NZB.xid marrow were established in parallel. Primary LBMC were readily established from these strains and showed similar patterns of growth for the 3-mo observation period. No significant differences in numbers of 14.8 positive cells were observed. However, NZB mice at both ages had a higher percentage of membrane IgM (mIgM)-expressing cells. Significant levels of supernatant IgM were found only in cultures of 6-mo NZB and BALB/c mice; levels were highest in NZB culture supernatants and were often more than 500 ng/ml; significant, although much lower, levels of IgG were likewise detected. Lymphoid cells from NZB.xid mice were unable to generate significant levels of IgM in supernatant fluids indicating the effects of the xid gene were displayed in vitro. Autoantibodies were not detected in any of the culture supernatants. Additional evidence for NZB hyperactivity in primary B lymphopoiesis was observed upon initiation of primary myeloid bone marrow cultures (MBMC) from these strains of mice and subsequently transferring them to LBMC conditions. This results in the cessation of myelopoiesis at the initiation of B lymphopoiesis. At the time of converting MBMC to LBMC, cultures of NZB and BALB/c mice morphologically resembled myeloid cultures and had neither B cell colony-forming units nor cells that expressed 14.8 or mIgM. However, following the switch, NZB mice had a 5-fold higher number of B cell colony-forming units. Further, MBMC established from NZB bone marrow cells had a reduced capacity to form colonies in the granulocyte-macrophage colony-forming unit assay. These studies indicate that defects of NZB hemopoietic cells are manifest in vitro and suggest the use of in vitro long term cultures as a valuable technique to further dissect the hematopoietic abnormalities of NZB mice and possible underlying microenvironmental defects.  相似文献   

16.
The number of mast cells in connective tissue from dorsal skin varied markedly among mouse strains. Inbred strains of mice were typed into three groups, high (NC and NZB mice), low (B6, B10, and BALB/c mice), and intermediate (C3H/He and DBA/2 mice), by their mast cell content in the skin. However, the strain differences in the number of mast cells was marginal at the age of weaning but became distinct with age. This could be explained mainly by the frequently observed clustering of mast cells in adult NC and NZB mice and the rarely observed clustering in younger mice as well as in adult B10 and BALB/c mice. The breeding experiment revealed that the difference in the number of mast cells between NC and B10 mice was controlled by a single autosomal dominant locus, for which we propose the designation Mcr (mast cell regulator). The role of the Mcr locus with regard to the frequency of the mast cell population in connective tissue is discussed.  相似文献   

17.
An in vitro system was designed to measure anti-DNA antibody synthesis, and the cellular basis of this autoantibody production in NZB X NZW (B/W)F1 (B/W F1) mice was analyzed. The spleen cells from old B/W F1 mice contained a number of B cells that spontaneously produced anti-DNA antibodies of both IgM and IgG classes in the absence of stimulants, thereby demonstrating that these B cells had been activated in vivo. These activated B cells could be removed by Sephadex G-10 column (G-10) filtration. Such G-10-passed, homogeneously small B cells were activated by the stimulant lipopolysaccharide (LPS) and produced both IgM and IgG class anti-DNA antibodies. The G-10-passed cells contained both B and T cells, and the cytotoxic treatment of the cells with monoclonal antibodies to T cells, anti-Thy-1 and anti-L3T4, abolished the LPS-induced IgG class, but not IgM class, anti-DNA antibody syntheses. Thus, the LPS-induced production of IgG class anti-DNA antibodies in B/W F1 mice is regulated by T cells. Reconstitution experiments revealed the requirement of T-B cell contact but not of the proliferative response of T cells. Moreover, there was no apparent adherent cell requirement. Such IgG class anti-DNA antibodies were produced only by spleen cells from old B/W F1 mice, but not from young B/W F1, NZB, NZW, and C57BL/6 mice. Like IgM class anti-DNA antibodies, LPS-induced synthesis of polyclonal IgM was T cell-independent. Only a slight reduction in the polyclonal IgG synthesis was observed after the G-10-passed cells had been treated with anti-Thy-1 antibody plus complement. This study should facilitate investigation of cell to cell interactions in the formation of autoantibodies and their correlations to immunologic abnormalities in autoimmune disease.  相似文献   

18.
We have analyzed gastrointestinal immune function in both DBA/2 and spontaneously autoimmune New Zealand Black (NZB) mice. We have studied both in vitro proliferation and differentiation of Peyer's patch cells and have measured immunoglobulin (Ig) secretion by cultured jejunal segments. Peyer's patch B cells and T cells from both DBA/2 and NZB mice showed similar proliferative responses to Con A and lipopolysaccharide (LPS), respectively. Unlike NZB splenic B cells, isolated Peyer's patch B cells from NZB mice did not spontaneously secrete Ig of any isotype. Seven-day cultures of equal numbers of Peyer's patch T cells and B cells resulted in similar patterns of secretion of IgA, IgG, and IgM in both strains. The addition of Con A to cultures of DBA/2 Peyer's patch cells consistently resulted in a onefold to threefold increase in IgA secretion after 7 days. Con A stimulation of NZB Peyer's patch cells did not produce any increment in IgA secretion. LPS stimulation of Peyer's patch cells from either strain resulted in a similar increase in IgG secretion with little effect on IgA secretion. The in vivo correlate of this finding was seen in the IgA to IgG ratio of Ig secreted by cultured jejunal fragments. In DBA/2 mice the rates of IgA/IgG varied from 2.36 to 4.85, whereas in NZB mice the ratio never exceeded 0.5. These experiments show that defects on the T cell compartment of NZB mice encompass gut-associated lymphoid tissue. The possible relationship of these findings and previously observed defects in oral tolerance is discussed.  相似文献   

19.
Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice   总被引:10,自引:0,他引:10  
Since anti-CD1 TCR transgenic T cells can activate syngeneic B cells via CD1 to secrete IgM and IgG and induce lupus in BALB/c mice, we studied the role of CD1 in the pathogenesis of lupus in NZB/NZW mice. Approximately 20% of B cells from the spleens of NZB/NZW mice expressed high levels of CD1 (CD1high B cells). The latter subset spontaneously produced large amounts of IgM anti-dsDNA Abs in vitro that was up to 25-fold higher than that of residual CD1int/low B cells. T cells in the NZB/NZW spleen proliferated vigorously to the CD1-transfected A20 B cell line, but not to the parent line. Treatment of NZB/NZW mice with anti-CD1 mAbs ameliorated the development of lupus. These results suggest that the CD1high B cells and their progeny are a major source of autoantibody production, and activation of B cells via CD1 may play an important role in the pathogenesis of lupus.  相似文献   

20.
The 4LO3311 monoclonal antibody, a new NK-specific reagent recently produced in our laboratory, reacts with spleen cells of 11 mouse strains, most of which do not express the NK-1.1 alloantigen recognized by the PK136 mAb. Among positive strains, the susceptibility of spleen cells to the complement-dependent NK-inhibiting activity of the 4LO3311 mAb was variable but independent of the initial NK cell activity level of cells tested. This property was furthermore not modified after poly(I:C) stimulation. The susceptibility of spleen cells to the in vitro 4LO3311 mAb plus complement treatment is however influenced by the absolute number of 4LO3311+ cells as well as by the density of the corresponding alloantigen at the cell surface. Moreover, it was established that the strain-related variations observed also depended upon the relative size of the 4LO3311 cell subset within the lytic NK cell population. Indeed, when C3H (NK-1.1-4LO3311+) mice were inoculated with the 4LO3311 mAb, the lytic activity of their spleen cells was almost unaltered but 4LO3311-reactive cells were no longer detected in the spleen of treated animals and remaining NK cells were totally resistant to the in vitro 4LO3311 mAb plus complement treatment. These findings indicate that the 4LO3311 mAb identifies a subset rather than all NK cells, even in a NK-1.1- strain. Since a NK-1.1-unreactive cell subset was identified in NZB (NK-1.1+4LO3311-) mice inoculated with the PK136 mAb, the NK-1.1+ cell population is not necessarily responsible for all the splenic NK cell activity in all NK-1.1+ strains. In B6C3F1 hybrid mice, a relatively large subset of NK-1.1-4LO3311- cells was found in addition to those expressing the NK-1.1, the 4LO3311 alloantigen, or both. According to these results, NK cell heterogeneity should thus be taken as an evolving concept whose resolution appears more and more complex with the identification of new NK-specific reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号